
Reconfigurable Computing for Embedded Systems, FPGA Devices and 
Software Components 

 
Graham Bardouleau and James Kulp 

Mercury Computer Systems, Inc. 
Phone: 978-967-1653 

Email Addresses: {gpb, jek}@mc.com 
 

 
In recent years the size and capabilities of field-programmable gate array (FPGA) devices have 
increased to a point where they can be deployed as adjunct processing elements within a 
multicomputer environment. This enables these devices to become an element within a 
reconfigurable system performing processing of high data rate streams of data. Conventionally, 
these devices have performed basically fixed-function processing at the input to a system. 
However, through the use of component-based programming models, it is possible to view these 
devices as general-purpose processing accelerators where the need arises within a system. 
 
A common approach to using FPGA devices in systems at present is based on the use of a 
dedicated driver or software proxy mechanism. The driver or proxy is responsible for controlling 
the flow of data between the FPGA and other elements within the system. This approach works, 
but often the driver or proxy requires intimate knowledge of the algorithm running within the 
FPGA device. 
 
As the drive toward reconfigurable computing platforms continues, the need for a standardized 
middleware that can be implemented and supported on all forms of processing elements 
increases. Through the use of such a middleware it would be possible to interface any form of 
processing element, including microprocessors, digital signal processors (DSPs), FPGAs and 
even application specific signal processors (ASSPs) and application specific integrated circuits 
(ASICs). The middleware would define the mechanism by which data would be transferred 
between processing elements and the associated signaling necessary to ensure data integrity 
within the system. 
 
Through the implementation of a middleware such as that mentioned above can provide a 
framework that supports a component-based application model by relieving the application 
implementation engineers of data movement and signaling issues. Various additional benefits are 
visible through the use of such a framework, including processor independence, fabric 
independence, and platform independence. The development of such a middleware and 
associated framework is ongoing at Mercury Computer Systems. 
 
This paper describes the approach taken at Mercury to develop such a middleware and 
framework that supports the execution of components on PowerPC microprocessors as well as 
Xilinx FPGA devices, treating them as peers in a system of heterogeneous processing resources. 
We will discuss also how this approach maximizes the portability of FPGA functional code in 
software radio environments. 

mailto:}@mc.com



