
Language-level Transactions for Modular Reliable Systems

C. Scott Ananian Martin Rinard
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

{cananian,rinard}@csail.mit.edu

The transaction model is a natural means to express atom-
icity, fault-tolerance, synchronization, and exception han-
dling in reliable programs. A (lightweight, in-memory) trans-
action can be thought of as a sequence of program loads and
stores which eithercommits or aborts. If a transaction com-
mits, then all of the loads and stores appear to have run atom-
ically with respect to other transactions. That is, the trans-
action’s operations appear not to have been interleaved with
those of other transactions or non-transactional code. If a
transaction aborts, then none of its stores take effect and the
transaction can be safely restarted, typically using a backoff
algorithm to preclude live-lock. A subset of the traditional
ACID database semantics are provided.

Although transactions can be implemented using mu-
tual exclusion (locks), we present algorithms utilizing non-
blocking synchronization to exploit optimistic concurrency
among transactions and provide fault-tolerance. A process
which fails while holding a lock within a critical region
can prevent all other non-failing processes from ever mak-
ing progress. It is in general not possible to restore the locked
data structures to a consistent state after such a failure. Non-
blocking synchronization offers a graceful solution to this
problem, as non-progress or failure of any one thread or mod-
ule will not affect the progress or consistency of other threads
or the system.

Implementing transactions using non-blocking synchro-
nization offers performance benefits as well. Even in
a failure-free system, page faults, cache misses, context
switches, I/O, and other unpredictable events may result in
delays to the entire system when mutual exclusion is used to
guarantee the atomicity of operation sequences; non-blocking
synchronization allows undelayed processes or processorsto
continue to make progress. Similarly, in real-time systems,
the use of non-blocking synchronization can preventpriority
inversion in the system by allowing high priority threads to
abort lower priority threads at any point.

We show how to integrate non-blocking transactions into
an object-oriented language, “transactifying” existing code to
fix existing concurrency bugs and using transactions for mod-
ular fault-tolerance, backtracking, exception-handling, and
concurrency control in new programs.

We propose the use of compiler-supported “atomic” blocks
to specify synchronization. This is less error-prone than man-
ual maintenance of a locking discipline: deadlocks may be

This research was supported by DARPA/AFRL Contract F33615-00-C-1692.

introduced when locks are not acquired and released in a
highly disciplined manner, and the specification of locking
discipline cuts across module boundaries. Races are common
when multiple shared objects are involved in an operation,
each with its own lock. We provide several examples of such
problematic locking code. A non-blocking transaction imple-
mentation prevents inadvertent deadlocks, andatomic dec-
larations implemented with the transaction mechanism can
extend across method invocations and module boundaries to
protect multiple objects involved in an operation without al-
lowing races between them. An optimistic non-blocking im-
plementation provides performance improvements over lock-
ing strategies in some cases as well.

Language-level transactions are used as a general
exception-handling and backtracking mechanism. Instead of
forcing the programmer to manually track changes made to
program state in order to implement proper fault recovery,
we can handle the exception using transaction rollback to au-
tomatically restore a safe program state, even if the fault oc-
curred in the middle of mutating shared objects. An efficient
and graceful transaction mechanism integrated into the pro-
gramming language encourages a robust programming style
where recovery and retry after an unexpected condition is
made simple and faults and recovery do not break abstraction
boundaries.

We describe an efficient pure-software transaction mecha-
nism we have implemented for programs written in Java. We
also discuss our design and simulation (with Asanović, Kusz-
maul, Leiserson, and Lie) of minimally-intrusive architecture
extensions which allow most transactions to complete with
near-zero overhead. Unlike previous hardware approaches,
our scheme is scalable and supports transactions of unlim-
ited size, although performance is best for transactions which
fit in local cache. Finally, we describe our hybrid hardware-
software scheme combining the speed hardware provides for
small transactions with the flexibility the software implemen-
tation allows for large or long-lived transactions.

Integrating transactions into the programming language
and implementing them with the high-efficiency techniques
described enables the creation of software with higher reli-
ability. Synchronization is more robust and its specification
is modular and less error-prone, and faults and exceptions in
general can be soundly handled with low overhead using the
transaction mechanism.

1




