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Birth of Interactive Supercomputing

• Dream of taking academic software 
commercial



Star-P
• Interactive Parallel Computing Environment
• Parallel Client/Server Architecture
• Main goal: parallel computing easier on the 

human user
• Academic Front End: MATLAB
• Four parallel approaches interacting:

– Embarrassingly Parallel
– Message Passing
– Backend Support (insert *p)
– Compiling

• Integrates several packages into one easy to 
use software



Page Rank Matrix

• Web crawl of 170,000 pages from mit.edu
• Matlab*P spy plot of the matrix of the graph



Clock

• c=mm(‘clock’);
• std(c);

• Simple example shows two modes 
interacting



Pieces of Pi
>> quad('4./(1+x.^2)', 0, 1);
ans = 3.14159270703219

>> a = (0:3*p) / 4
a = ddense object: 1-by-4

>> a(:)
ans =

0
0.25000000000000
0.50000000000000
0.75000000000000

>> b = a+.25;

>> c = mm('quad','4./(1+x.^2)', a, b);   % Should be “feval”!
c = ddense object: 1-by-4

>> sum(c(:))
ans = 3.14159265358979



FFT2 in four lines
>>  A = randn(4096, 4096*p)
A = ddense object: 4096-by-4096
>> tic;

>> B = mm('fft', A);
>> C = B.';
>> D = mm('fft’, C);
>> F = D.';

>> toc
elapsed_time = 73.50

>>a = A(:,:);
>>  tic; g = fft2(a); toc
elapsed_time = 202.95

… we have FFTW installed as well!



Matlab sparse matrix design principles
• All operations should give the same results for 

sparse and full matrices   (almost all)

• Sparse matrices are never created automatically, 
but once created they propagate

• Performance is important -- but usability, simplicity, 
completeness, and robustness are more important

• Storage for a sparse matrix should be O(nonzeros)

• Time for a sparse operation should be O(flops)
(as nearly as possible)
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Matlab*P dsparse matrices: same principles, 
but some different tradeoffs



Sparse matrix operations

• dsparse layout, same semantics as ddense
• For now, only row distribution
• Matrix operators:  +, -, max, etc.
• Matrix indexing and concatenation

A (1:3, [4 5 2])  = [ B(:, 7)  C ] ;

• A \ b by direct methods
• Conjugate gradients



Sparse data structure
31 53 59 41 2631 0 53

0 59 0
41 26 0

1 3 2 1 2

• Full:
• 2-dimensional array of 

real or complex numbers
• (nrows*ncols) memory

• Sparse: 
• compressed row storage
• about (1.5*nzs + .5*nrows) 

memory



Distributed sparse data structure

P0

P1

P2

Pn

5941 532631

23 131

Each processor stores:
• # of local nonzeros
• range of local rows
• nonzeros in CSR form



Sparse matrix times dense vector

• y = A * x

• The first call to matvec caches a
communication schedule for matrix A.
Later calls to multiply any vector by A use
the cached schedule.

• Communication and computation overlap.

• Can use a tuned sequential matvec kernel
on each processor.



Sparse linear systems

• x = A \ b

• Matrix division uses MPI-based direct solvers:
– SuperLU_dist:  nonsymmetric static pivoting
– MUMPS:  nonsymmetric multifrontal
– PSPASES:  Cholesky

ppsetoption(’SparseDirectSolver’,’SUPERLU’)

• Iterative solvers implemented in Matlab*P
• Some preconditioners; ongoing work



Application:  Fluid dynamics
function lambda = peigs (A, B, 
sigma, iter, tol)

[m n] = size (A);
C = A - sigma * B;
y = rand (m, 1);

for k = 1:iter
q = y ./ norm (y);
v = B * q;
y = C \ v;
theta = dot (q, y);
res = norm (y - theta*q);
if res <= tol
break;

end;
end;

lambda = 1 / theta;

• Modeling density-driven 
instabilities in miscible 
fluids (Goyal, Meiburg)

• Groundwater modeling, 
oil recovery, etc.

• Mixed finite difference & 
spectral method

• Large sparse generalized 
eigenvalue problem



Combinatorial algorithms in Matlab*P

• Sparse matrices are a good start on primitives 
for combinatorial scientific computing.
– Random-access indexing:   A(i,j)
– Neighbor sequencing:         find (A(i,:))
– Sparse table construction:   sparse (I, J, V)

• What else do we need?



Sorting in Matlab*P

• [V, perm] = sort (V)

• Common primitive for many sparse matrix and 
array algorithms: sparse(), indexing, transpose

• Matlab*P uses a parallel sample sort 



Sample sort

• (Perform a random permutation)

• Select p-1 “splitters” to form p buckets

• Route each element to the correct bucket

• Sort each bucket locally

• “Starch” the result to match the distribution 
of the input vector



Sample sort example
Initial data (after randomizing)

3 6 8 1 5 4 7 2 9
Choose splitters (2 and 6)

1 2 3 6 5 4 8 7 9
Sort local data

1 2 3 4 5 6 7 8 9
Starch

1 2 3 4 5 6 7 8 9



How sparse( ) works

• A = sparse (I, J, V)

• Input:  ddense vectors I, J, V (optionally, also 
dimensions and distribution info)

• Sort triples (i, j, v) by (i, j)

• Starch the vectors for desired row distribution

• Locally convert to compressed row indices

• Sum values with duplicate indices



Graph / mesh partitioning
• Reduce communication in

matvec and other parallel
computations

• Reordering for sparse GE

• PARMETIS

• Parts of G/Teng Matlab
meshpart toolbox
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Geometric mesh partitioning

• Algorithm of Miller, Teng, Thurston, Vavasis

• Partitions irregular finite element meshes into equal-size 
pieces with few connecting edges

• Guaranteed quality partitions for well-shaped meshes, 
often very good results in practice

• Existing implementation in sequential Matlab

• Code runs in Matlab*P with very minor changes



Outline of algorithm

1. Project points stereographically from Rd to Rd+1

2. Find “centerpoint”  (generalized median)

3. Conformal map:  Rotate and dilate

4. Find great circle

5. Unmap and project down

6. Convert circle to separator



Geometric mesh partitioning



Matching and depth-first search in Matlab
• dmperm: Dulmage-Mendelsohn decomposition

• Square, full rank A:
– [p, q, r] = dmperm(A);
– A(p,q) is block upper triangular with nonzero diagonal
– also, strongly connected components of a directed graph
– also, connected components of an undirected graph

• Arbitrary A:
– [p, q, r, s] = dmperm(A);
– maximum-size matching in a bipartite graph
– minimum-size vertex cover in a bipartite graph
– decomposition into strong Hall blocks



Connected components
• Sequential Matlab uses depth-first search (dmperm), 

which doesn’t parallelize well

• Shiloach-Vishkin algorithm:
– repeat

• Link every (super)vertex to a random neighbor
• Shrink each tree to a supervertex by pointer jumping

– until no further change

• Originally a processor-efficient PRAM algorithm

• Matlab*P code looks much like the PRAM code



Pointer jumping

while ~all( C(myrows) == C(C(myrows)) )
C(myrows) = C(C(myrows));

end
C(myrows) = min (C(myrows), C(C(myrows))); 



Example of execution

Final components

After first iteration



Page Rank
• Importance ranking 

of web pages
• Stationary distribution 

of a Markov chain
• Power method: matvec

and vector arithmetic
• Matlab*P page ranking

demo (from SC’03) on 
a web crawl of mit.edu
(170,000 pages)



Remarks
• Easy-to-use interactive programming environment

• Interface to existing parallel packages

• Combinatorial methods toolbox being built on 
parallel sparse matrix infrastructure
– Much to be done:  spanning trees, searches, etc.

• A few issues for ongoing work  
– Dynamic resource management
– Fault management
– Programming in the large




