Sustaining the Exponential Growth of Embedded DSP Capability ${ }^{\dagger}$

High Performance Embedded Computing Workshop

28 September 2004

Dr. Gary Shaw
MIT Lincoln Laboratory

Dr. Mark Richards
Georgia Institute of Technology

${ }^{\dagger}$ This work was sponsored by the Department of the Air Force under Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

Elements Contributing to Embedded Processor Performance

Outline

- Historical perspective - fulfillment of Moore's Law
- Impediments to continued IC density growth
- Algorithms - the softer side of exponential growth
- Implications regarding sustaining exponential growth
- Summary and Conclusions

Moore's Law: Prediction and Realization

Transistors
 Per Die

John von Neumann: "Truth is much too complicated to allow anything but approximations."

1965 Actual Data

Top 500 Computer Growth

Outline

- Historical perspective - fulfillment of Moore's Law
- Impediments to continued IC density growth
- Heat dissipation
- Quantum effects
- Production technology
- Algorithms - the softer side of exponential growth
- Implications regarding sustaining exponential growth
- Summary and Conclusions

Performance Implications of Shrinking Feature Size

196519701975198019851990199520002005201020152020

Year

Moore's Law Growth in Power Density

Moore's Law is Dead, Long Live Moore's Law! Theory \& Practice: Feature Size for MOSFET Devices

It's tough to make predictions, especially about the future. - Yogi Berra

Sources:
Combined graph and original concept: Lance Glasser, former Director, DARPA/ETO
Theory: Provided by Prof. David Ferry, Arizona State University
Practice: The National Technology Roadmap for Semiconductors (SIA Publication, 1994)

040928-9
HPEC GAS

Capitalization Cost Impediments

Fulfillment and Impact of Moore's Prediction

- Examples of far-reaching impact

Altair 8800, 1975

Exponential Improvements In Computing at a Fixed

Price Point

Embedded Processors For Real-time Digital Signal Processing

Low-power Wireless
Applications

Loosely-Coupled Hardware \& Software Design Methodologies
of Technology
040928-11
HPEC GAS

Outline

- Historical perspective - fulfillment of Moore's Law
- Impediments to continued IC density growth
- Algorithms - the softer side of exponential growth
- Implications regarding sustaining exponential growth
- Summary and Conclusions

Elements Contributing to Embedded Processor Performance

Different Character of Hardware (IC) Vs. Algorithm Improvements

Improvement Metrics	Hardware	Algorithms
Regularity	Predictable	Unpredictable
Dependent variable	Time	Order complexity
Impact on applications	Incremental	Leap-ahead
Useful lifetime	3 years or less	10 years or more
R\&D Cost growth	$2 x$ in 3 years	$1.11 x$ in 3 years

Computational Complexity Reduction Afforded by the FFT Over a Sum-of-Products DFT

Moore's-Law Equivalent Years Required to Match FFT Computational Speedup

Exponential Improvement in Modem Rates

Application Maturation Cycle

Pulse-Doppler Radar Example

- Algorithmically naïve implementation

- Reduced-order implementation with digital I/Q

Pulse-Doppler Radar Algorithm Improvements

Outline

- Historical perspective - fulfillment of Moore's Law
- Impediments to continued IC density growth
- Algorithms - the softer side of exponential growth
- Implications regarding sustaining exponential growth
- Summary and Conclusions

IC Vs. Algorithm Development

 (A Contrived but Useful Analogy)

- Algorithms

Increased Emphasis on Codesign Methodologies

Wafer-Fab Capitalization Cost Compared to Annual DSP Algorithm R\&D Costs

Summary and Conclusions

- Fulfilling Moore's Law
- Enabled by diverse, innovative R\&D aimed at realizing a common vision (ITRS semiconductor roadmap)
- Continued improvements may be impeded by a combination of thermal, quantum, and capital cost limits
- Taking up the slack
- Over same 40-year time frame as Moore's Law, algorithm innovation has yielded exponentially improving performance as well
- Algorithm innovation also enabled by diverse R\&D, but without as clear of an industry-wide common vision
- Algorithm R\&D cost growth significantly lower than fab capital cost growth (1.1x vs. 2x every 3 years)
- Increasing the effectiveness of algorithm R\&D
- Develop better methods for quantifying the return on investment for algorithm R\&D
- Consider mechanisms for developing a broader industry vision and commitment to a long-term R\&D roadmap
- Hardware/software codesign methods increasingly important
of Technology
040928-25
HPEC GAS

