The GAIA Project: Evaluation of GPU-Based Programming Environments for Knowledge Discovery

David Bremer, Lawrence Flath, John Johnson, Holger Jones, Sheila Vaidya, Randall Frank*

Lawrence Livermore National Laboratory

UCRL-PRES-206819

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Motivation

Trends in the graphics marketplace

- Inherent parallelism of graphics tasks
- Performance increasing faster than for CPUs
- Move to programmable hardware
- Effects of mass markets

Not expected to end anytime soon...

- Today: 40GF, 2GB/s I/O, 30GB/s memory
- 2006: 100GF, 8GB/s I/O, 60GB/s memory
- 2007: 1TF...

The NV40 and the Sony Playstation 3

- Are graphics trends a glimpse of the future?
- The nVidia NV40 Architecture
 - 256MB+ RAM
 - 128 32bit IEEE FP units @ 400Mhz
 - 220M transistors, 110W of power
- The PlayStation3 (patent application)
 - Core component is a cell
 - 1 "PowerPC" CPU +
 - 8 APUs ("vectorial" processors)
 - 4GHz, 128K RAM, 256GFLOP/cell
 - Multiple cells (Phone, PDA, PS3, ...)
 - Four cell architecture (1TFLOP)
 - Central 64MB memory
- Keys
 - Streaming data models
 - Cache-driven/cache-oblivious computing

nVidia NV30

nVidia NV40

Data representations for GPUs

- Programmable FP SIMD engines, 40-100GF today, 1TF by '06
- Where can they be exploited?
 - Many advantages for the data pipeline
 - Data/algorithmic design challenges
 - Possible applicability for simulation
 - Many current research projects on scientific computing, databases, audio processing

Current projects

- Programmable rendering pipeline
 - Multi-variate, interactive
 - Increased graphics precision
- Image composition pipeline
- Implementation of physics based rendering
 - Simulated radiography, diffraction computation
- Large image geo-registration
 - 100x performance improvement over CPU

Specific Project Goals

Investigate use of COTS technologies for computation

- "Non-traditional" applications
 - Image and speech
 - String, statistical, graph...
- Mechanisms necessary for exploitation
 - Data infrastructure (e.g. cache coherent streaming...)
 - Software abstractions
- Delineate some boundary conditions on their use
 - Evaluation vs CPU based solutions
 - Parameter-space investigation

Data Infrastructure

- Forms the basis of a comparative framework
 - Support both GPU and CPU algorithmic implementations
 - Targets multiple platforms
 - Provides data abstraction
 - "Tile-based" streaming
 - Cache coherency control
 - CPU to GPU to CPU glue layer
 - Utilizes higher-level languages for algorithms
 - Cg, Brook, GLSL, etc

Image Processing Applications

Common attributes

- Large, streaming imagery on a single gfx card
- Parallel 1D and 2D applications
- Multi-spectral (four, possibly temporal channels)
- Discrete convolution
 - Arbitrary kernels
- Correlation
 - Separate threshold, search, and detection phase included

Up String Processing Applications

- Representation and bandwidth characteristics
- String comparison
 - "Bulk" comparison operations individual outputs
- String sorting
 - Based on string comparison
 - Batched sort based on radix algorithms
- String searching
 - "Wildcard" pattern matching
 - Sort-based element search

Other Application Targets

Image transforms

- FFT, Wavelet
- Many application domains

Statistical functions on images

- Moments, regression (general linear model)
- Hypothesis/model driven image processing, texture characterization, etc
- Hidden Markov Models

Graph search

- Structured (fully connected) or unstructured graphs, detect and return lowest cost path
- Many application domains

System Targets

 Constrained system targets based on resource limits

- Hardware targets
 - nVidia: NV3x, NV4x, NV5x
 - Focus on NV4x due to new branching capabilities
 - Dual CPU IA32 platform
 - PCI-Express (PCIe) enhanced readback and async bandwidth
 - BG/L and Merrimac
- OS targets
 - Primarily Linux, some Windows due to driver issues
- Language targets
 - nVidia Cg, Brook

 All timings count download, render, and readback

 First render pass is excluded from the count

 Overhead to load shader can be substantial

Software vs. two-texture hardware implementation

At all but the smallest kernel sizes, GPUs are much faster

CPU and GPU results, 512x512 images

Software vs. two-texture hardware implementation
32-bit textures use more memory bandwidth

CPU and GPU Results, 9x9 Kernel

Convolution Timing Results

- Two-texture vs. procedural hardware implementations
- Two-texture implementation requires more memory bandwidth

Double Precision

Port of David Bailey's single-double Fortran library* to NVidia's Cg language Can emulate double precision Use two single-precision floats High order float is estimate to the *double*; Low order float is error of that estimate Resulting precision is almost *double* The exponent remains at single range

available at htpp://crd.lbl.gov/~dhbailey/mpdist

Double Precision Results

Convolution with single and emulated-double arithmetic
 Double precision only 1.5x slower than single precision at the same texture depth

Future Plans

- Obtain results for a variety of algorithms including strings, HMMs, and FFTs
 Include performance and accuracy
 Extend to new architectures as available (e.g. Merrimac)
- Explore other high-level languages (e.g. brook implementations and other streaming languages)
- Launch a benchmarking web site: http://www.llnl.gov/gaia