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Project Overview

Simulative analysis of Space-Based Radar (SBR) systems using 
RapidIO interconnection networks

RapidIO (RIO) is a high-performance, switched interconnect for 
embedded systems

Can scale to many nodes
Provides better bisection bandwidth than existing bus-based technologies

Study optimal method of constructing scalable RIO-based 
systems for Ground Moving Target Indicator (GMTI)

Identify system-level tradeoffs in system designs
Discrete-event simulation of RapidIO network, 
processing elements, and GMTI algorithm
Identify limitations of RIO design for SBR
Determine effectiveness of various GMTI algorithm 
partitionings over RIO network

Image courtesy [1]
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Background- RapidIO

Three-layered, embedded system interconnect architecture
Logical – memory mapped I/O, message passing, and globally shared memory
Transport
Physical – serial and parallel

Point-to-point, packet-switched interconnect
Peak single-link throughput ranging from 2 to 64 Gb/s
Focus on 16-bit parallel LVDS RIO implementation for satellite systems

Image courtesy [2]
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Background- GMTI

GMTI used to track moving targets on ground
Estimated processing requirements range from 
40 (aircraft) to 280 (satellite) GFLOPs

GMTI broken into four stages:
Pulse Compression (PC)
Doppler Processing (DP)
Space-Time Adaptive Processing (STAP)
Constant False-Alarm Rate detection (CFAR)

Incoming data organized as 3-D matrix (data cube)
Data reorganization (“corner turn”) necessary between stages for processing efficiency
Size of each cube dictated by Coherent Processing Interval (CPI)
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GMTI Partitioning Methods- Straightforward

Data cubes divided among all Processing Elements (PEs)
Partitioned along optimal dimension for any particular stage
Data reorganization between stages implies personalized all-to-all 
communication (corner turn) ⇒ stresses backplane links
Minimal latency

Entire cube must be processed within one CPI to receive next cube
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GMTI Partitioning Methods- Staggered

Data cubes sent to groups of PEs in round-robin fashion
Limiting each Processing Group (PG) to a single board significantly reduces 
backplane bandwidth impact

Time given to each PG to receive and process a data cube is N × CPI
N = number of processing groups
CPI = amount of time between generated data cubes

Latency to produce result is higher than in straightforward partitioning
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GMTI Partitioning Methods- Pipelined
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Each PE group assigned to process a single stage of GMTI
Groups may have varying numbers of PEs depending upon processing 
requirements of each stage

Potential for high cross-system bandwidth requirements
Irregular and less predictable traffic distribution
Frequent communication between different group sizes

Latency to produce result is higher than straightforward method
One result emerges each CPI, but the results are three CPIs old
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Model Library Overview

Modeling library created using Mission Level                    
Designer (MLD), a commercial discrete-event simulation modeling tool

C++-based, block-level, hierarchical modeling tool
Algorithm modeling accomplished via script-based processing

All processing nodes read from a global script file to determine when/where 
to send data, and when/how long to compute

Our model library includes:
RIO central-memory switch
Compute node with RIO endpoint
GMTI traffic source/sink
RIO logical message-passing layer
Transport and parallel physical
layers

Model of Compute Node
with RIO Endpoint
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RapidIO Models

Key features of Endpoint model
Message-passing logical layer
Transport layer
Parallel physical layer

Transmitter- and receiver-controlled flow control
Error detection and recovery
Priority scheme for buffer management
Adjustable link speed and width
Adjustable priority thresholds and queue lengths

Key features of Central-memory switch model
Selectable cut-through or store-and-forward routing
High-fidelity TDM model for memory access
Adjustable priority thresholds based on free switch memory
Adjustable link rates, etc. similar to endpoint model

Model of RIO
Central-Memory Switch
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GMTI Processor Board Models

System contains many processor boards connected via backplane
Each processor board contains one RIO switch and four 
processors
Processors modeled with three-stage 
finite state machine

Send data
Receive data
Compute

Behavior of processors controlled
with script files

Script generator converts high-level
GMTI parameters to script
Script is fed into simulations

Model of
Four-Processor Board

Processor script
send…

receive…
SimulationScript

generator
GMTI & system 

parameters
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System Design Constraints 

16-bit parallel 250MHz DDR RapidIO links (1 GB/s)
Expected radiation-hardened component performance by time RIO and 
SBR ready to fly in ~2008 to 2010

Systems composed of processor boards interconnected by RIO 
backplane

4 processors per board
8 Floating-Point Units (FPUs) per processor
One 8-port central-memory switch per board; implies 4 connections to 
backplane per board

Baseline GMTI algorithm parameters:
Data cube: 64k ranges, 256 pulses, 6 beams
CPI = 256ms
Requires ~3 GB/s of aggregate throughput from source to sink to meet 
real-time constraints



28 September 2004 13

Backplane and System Models

High throughput requirements for data source and corner turns require 
non-blocking connectivity between all nodes and data sources

7-Board System

4-Switch Non-blocking Backplane

Backplane-to-Board 0, 1, 2, 3 Connections

Backplane-to-Board 4, 5, 6, 
and Data Source Connections
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Overview of Experiments

Experiments conducted to evaluate strengths and weaknesses of 
each partitioning method
Same switch backplane used for each experiment
Varied data cube size

256 pulses, 6 beams for all tests
Varied number of ranges from 32k to 64k

Several system sizes used
Analysis determined that 7-board configuration necessary for 
straightforward method to meet deadline
Both 6- and 7-board configurations used for pipelined method
Staggered method does not benefit from a system larger than 5 boards 
with configuration used

Staggering performed with one processor board per group
Larger system-configurations leave processors idle
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Result Latency Comparison

Result latency is interval from 
data arrival until results reported
Straightforward achieved lowest 
latency, required most 
processor boards

No result for 64k ranges because 
system could not meet real-time 
deadline

Staggered requires least number 
of processor boards to meet 
deadline

Efficient system configuration, 
small communication groups
Tradeoff is result latency

Pipelined method a compromise
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Switch Memory Histogram with Straightforward Method
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Chart shows frequency of 
time free switch memory 
lies in each bracket
Max switch memory is 
16384 bytes
Results taken from switch 
on processor board 1

All processor board 
switches see essentially 
identical memory usage

~90% of time is spent with 
switch ~80% free

Most predictable 
communication patterns, 
enabling effective static 
planning of comm. paths

7-board, straightforward, 
48k ranges
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Switch Memory Histogram with Staggered Method
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Staggered method uses 
slightly more memory over 
course of simulation

More data flows through 
single switch during corner 
turn
Less spread in 
communication patterns 
than straightforward method

More switch memory usage 
indicates more contention 
for a particular port, not 
necessarily more utilization 
or communication

5-board, staggered, 
48k ranges
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Switch Memory Histogram with Pipelined Method
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Pipelined method stresses 
network

Irregular comm. patterns
Greater possibility for 
output port contention
Non-blocking network not 
helpful when multiple 
senders vying for same 
destination

Difficult to plan out optimal 
comm. paths beforehand

Much synchronization 
required to stagger many-
to-one communication, but 
not extremely costly in 
total execution time

7-board, pipelined, 
48k ranges
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Average Parallel Efficiency

Parallel efficiency defined as sequential execution time (i.e. result latency) divided 
by N times the parallel execution time

N = number of processors that work on a single CPI
Pipelined efficiency a special case, must use N/3 for fair comparison (shown) since all 
processors do not work on a CPI at the same time

Staggered method most efficient due to small communication groups and low 
number of processors working on same CPI

Straightforward method worst for opposite reason, pipelined method a compromise
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Conclusions

Developed suite of simulation models and mechanisms for 
evaluation of RapidIO designs for space-based radar
Evaluated three partitioning methods for GMTI over a fixed RapidIO 
non-blocking network topology
Straightforward partitioning method produced lowest result 
latencies, but least scalable

Unable to meet real-time deadline with our maximum data cube size
Staggered partitioning method produced worst result latencies, but 
highest parallel efficiency

Also able to perform algorithm with least number of processing boards
Important for systems where power consumption, weight are a concern

Pipelined partitioning method is a compromise in terms of latency, 
efficiency, and scalability, but heavily taxes network
RapidIO provides feasible path to flight for space-based radar

Future work to focus on additional SBR variants (e.g. Synthetic Aperture 
Radar) and experimental RIO analysis
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