
28 September 2004

Virtual Prototyping and Performance
Analysis of RapidIO-based System
Architectures for Space-Based Radar

David Bueno, Adam Leko, Chris Conger,
Ian Troxel, and Alan D. George

HCS Research Laboratory
College of Engineering

University of Florida

28 September 2004 2

Outline

I. Project Overview
II. Background

I. RapidIO (RIO)
II. Ground-Moving Target Indicator (GMTI)

III. Partitioning Methods
IV. Modeling Environment and Models

I. Compute node and RIO endpoint models
II. RapidIO switch model
III. GMTI models
IV. System and backplane model

V. Experiments and Results
I. Result latency
II. Switch memory utilization
III. Parallel efficiency

VI. Conclusions

28 September 2004 3

Project Overview

Simulative analysis of Space-Based Radar (SBR) systems using
RapidIO interconnection networks

RapidIO (RIO) is a high-performance, switched interconnect for
embedded systems

Can scale to many nodes
Provides better bisection bandwidth than existing bus-based technologies

Study optimal method of constructing scalable RIO-based
systems for Ground Moving Target Indicator (GMTI)

Identify system-level tradeoffs in system designs
Discrete-event simulation of RapidIO network,
processing elements, and GMTI algorithm
Identify limitations of RIO design for SBR
Determine effectiveness of various GMTI algorithm
partitionings over RIO network

Image courtesy [1]

28 September 2004 4

Background- RapidIO

Three-layered, embedded system interconnect architecture
Logical – memory mapped I/O, message passing, and globally shared memory
Transport
Physical – serial and parallel

Point-to-point, packet-switched interconnect
Peak single-link throughput ranging from 2 to 64 Gb/s
Focus on 16-bit parallel LVDS RIO implementation for satellite systems

Image courtesy [2]

28 September 2004 5

Background- GMTI

GMTI used to track moving targets on ground
Estimated processing requirements range from
40 (aircraft) to 280 (satellite) GFLOPs

GMTI broken into four stages:
Pulse Compression (PC)
Doppler Processing (DP)
Space-Time Adaptive Processing (STAP)
Constant False-Alarm Rate detection (CFAR)

Incoming data organized as 3-D matrix (data cube)
Data reorganization (“corner turn”) necessary between stages for processing efficiency
Size of each cube dictated by Coherent Processing Interval (CPI)

28 September 2004 6

GMTI Partitioning Methods- Straightforward

Data cubes divided among all Processing Elements (PEs)
Partitioned along optimal dimension for any particular stage
Data reorganization between stages implies personalized all-to-all
communication (corner turn) ⇒ stresses backplane links
Minimal latency

Entire cube must be processed within one CPI to receive next cube

28 September 2004 7

GMTI Partitioning Methods- Staggered

Data cubes sent to groups of PEs in round-robin fashion
Limiting each Processing Group (PG) to a single board significantly reduces
backplane bandwidth impact

Time given to each PG to receive and process a data cube is N × CPI
N = number of processing groups
CPI = amount of time between generated data cubes

Latency to produce result is higher than in straightforward partitioning

28 September 2004 8

GMTI Partitioning Methods- Pipelined

PE
#7

PE
#5

PE
#4

PE
#3

PE
#2

PE
#1

PE
#9

PE
#6

PE
#8

Pulse
Compression

Doppler
Processing STAP + CFAR

start time
CPI 1 CPI 2 CPI 3 CPI 4 CPI 5

PC

DP

STAP

CFAR

Data
Cube 1

Data
Cube 1

Data
Cube 1

Data
Cube 1

Data
Cube 2

Data
Cube 2

Data
Cube 2

Data
Cube 2

Data
Cube 3

Data
Cube 3

Data
Cube 3

Results of 1st
data cube

ready

Results of 2nd
data cube

ready

Each PE group assigned to process a single stage of GMTI
Groups may have varying numbers of PEs depending upon processing
requirements of each stage

Potential for high cross-system bandwidth requirements
Irregular and less predictable traffic distribution
Frequent communication between different group sizes

Latency to produce result is higher than straightforward method
One result emerges each CPI, but the results are three CPIs old

28 September 2004 9

Model Library Overview

Modeling library created using Mission Level
Designer (MLD), a commercial discrete-event simulation modeling tool

C++-based, block-level, hierarchical modeling tool
Algorithm modeling accomplished via script-based processing

All processing nodes read from a global script file to determine when/where
to send data, and when/how long to compute

Our model library includes:
RIO central-memory switch
Compute node with RIO endpoint
GMTI traffic source/sink
RIO logical message-passing layer
Transport and parallel physical
layers

Model of Compute Node
with RIO Endpoint

28 September 2004 10

RapidIO Models

Key features of Endpoint model
Message-passing logical layer
Transport layer
Parallel physical layer

Transmitter- and receiver-controlled flow control
Error detection and recovery
Priority scheme for buffer management
Adjustable link speed and width
Adjustable priority thresholds and queue lengths

Key features of Central-memory switch model
Selectable cut-through or store-and-forward routing
High-fidelity TDM model for memory access
Adjustable priority thresholds based on free switch memory
Adjustable link rates, etc. similar to endpoint model

Model of RIO
Central-Memory Switch

28 September 2004 11

GMTI Processor Board Models

System contains many processor boards connected via backplane
Each processor board contains one RIO switch and four
processors
Processors modeled with three-stage
finite state machine

Send data
Receive data
Compute

Behavior of processors controlled
with script files

Script generator converts high-level
GMTI parameters to script
Script is fed into simulations

Model of
Four-Processor Board

Processor script
send…

receive…
SimulationScript

generator
GMTI & system

parameters

28 September 2004 12

System Design Constraints

16-bit parallel 250MHz DDR RapidIO links (1 GB/s)
Expected radiation-hardened component performance by time RIO and
SBR ready to fly in ~2008 to 2010

Systems composed of processor boards interconnected by RIO
backplane

4 processors per board
8 Floating-Point Units (FPUs) per processor
One 8-port central-memory switch per board; implies 4 connections to
backplane per board

Baseline GMTI algorithm parameters:
Data cube: 64k ranges, 256 pulses, 6 beams
CPI = 256ms
Requires ~3 GB/s of aggregate throughput from source to sink to meet
real-time constraints

28 September 2004 13

Backplane and System Models

High throughput requirements for data source and corner turns require
non-blocking connectivity between all nodes and data sources

7-Board System

4-Switch Non-blocking Backplane

Backplane-to-Board 0, 1, 2, 3 Connections

Backplane-to-Board 4, 5, 6,
and Data Source Connections

28 September 2004 14

Overview of Experiments

Experiments conducted to evaluate strengths and weaknesses of
each partitioning method
Same switch backplane used for each experiment
Varied data cube size

256 pulses, 6 beams for all tests
Varied number of ranges from 32k to 64k

Several system sizes used
Analysis determined that 7-board configuration necessary for
straightforward method to meet deadline
Both 6- and 7-board configurations used for pipelined method
Staggered method does not benefit from a system larger than 5 boards
with configuration used

Staggering performed with one processor board per group
Larger system-configurations leave processors idle

28 September 2004 15

Result Latency Comparison

Result latency is interval from
data arrival until results reported
Straightforward achieved lowest
latency, required most
processor boards

No result for 64k ranges because
system could not meet real-time
deadline

Staggered requires least number
of processor boards to meet
deadline

Efficient system configuration,
small communication groups
Tradeoff is result latency

Pipelined method a compromise

0

256

512

768

1024

1280

1536

32000 40000 48000 56000 64000

Number of ranges

La
te

nc
y

(m
s)

Straightforward, 7 boards
Staggered, 5 boards

Pipelined, 6 boards
Pipelined, 7 boards

28 September 2004 16

Switch Memory Histogram with Straightforward Method

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 3276.8 6553.6 9830.4 13107.2

Free memory (bytes)

Fr
eq

ue
nc

y

Chart shows frequency of
time free switch memory
lies in each bracket
Max switch memory is
16384 bytes
Results taken from switch
on processor board 1

All processor board
switches see essentially
identical memory usage

~90% of time is spent with
switch ~80% free

Most predictable
communication patterns,
enabling effective static
planning of comm. paths

7-board, straightforward,
48k ranges

28 September 2004 17

Switch Memory Histogram with Staggered Method

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 3276.8 6553.6 9830.4 13107.2

Free memory (bytes)

Fr
eq

ue
nc

y

Staggered method uses
slightly more memory over
course of simulation

More data flows through
single switch during corner
turn
Less spread in
communication patterns
than straightforward method

More switch memory usage
indicates more contention
for a particular port, not
necessarily more utilization
or communication

5-board, staggered,
48k ranges

28 September 2004 18

Switch Memory Histogram with Pipelined Method

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 3276.8 6553.6 9830.4 13107.2

Free memory (bytes)

Fr
eq

ue
nc

y

Pipelined method stresses
network

Irregular comm. patterns
Greater possibility for
output port contention
Non-blocking network not
helpful when multiple
senders vying for same
destination

Difficult to plan out optimal
comm. paths beforehand

Much synchronization
required to stagger many-
to-one communication, but
not extremely costly in
total execution time

7-board, pipelined,
48k ranges

28 September 2004 19

Average Parallel Efficiency

Parallel efficiency defined as sequential execution time (i.e. result latency) divided
by N times the parallel execution time

N = number of processors that work on a single CPI
Pipelined efficiency a special case, must use N/3 for fair comparison (shown) since all
processors do not work on a CPI at the same time

Staggered method most efficient due to small communication groups and low
number of processors working on same CPI

Straightforward method worst for opposite reason, pipelined method a compromise

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Straightforward,
7 boards

Staggered,
5 boards

Pipelined,
6 boards

Pipelined,
7 boards

Ef
fic

ie
nc

y

28 September 2004 20

Conclusions

Developed suite of simulation models and mechanisms for
evaluation of RapidIO designs for space-based radar
Evaluated three partitioning methods for GMTI over a fixed RapidIO
non-blocking network topology
Straightforward partitioning method produced lowest result
latencies, but least scalable

Unable to meet real-time deadline with our maximum data cube size
Staggered partitioning method produced worst result latencies, but
highest parallel efficiency

Also able to perform algorithm with least number of processing boards
Important for systems where power consumption, weight are a concern

Pipelined partitioning method is a compromise in terms of latency,
efficiency, and scalability, but heavily taxes network
RapidIO provides feasible path to flight for space-based radar

Future work to focus on additional SBR variants (e.g. Synthetic Aperture
Radar) and experimental RIO analysis

28 September 2004 21

Bibliography

[1] http://www.afa.org/magazine/aug2002/0802radar.asp
[2] G. Shippen, “RapidIO Technical Deep Dive 1: Architecture & Protocol,” Motorola Smart

Network Developers Forum, 2003.
[3] “RapidIO Interconnect Specification (Parts I-IV), ” RapidIO Trade Association, June

2002.
[4] “RapidIO Interconnect Specification, Part VI: Physical Layer 1x/4x LP-Serial

Specification,” RapidIO Trade Association, June 2002.
[5] M. Linderman and R. Linderman, “Real-Time STAP Demonstration on an Embedded

High Performance Computer,” Proc. of the IEEE National Radar Conference, Syracuse,
NY, May 13-15, 1997.

[6] “Space-Time Adaptive Processing for Airborne Radar,” Tech. Rep. 1015, MIT Lincoln
Laboratory, 1994.

[7] G. Schorcht, I. Troxel, K. Farhangian, P. Unger, D. Zinn, C. Mick, A. George, and H.
Salzwedel, “System-Level Simulation Modeling with MLDesigner,” Proc. of 11th
IEEE/ACM International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems (MASCOTS), Orlando, FL, October 12-15,
2003.

[7] R. Brown and R. Linderman, “Algorithm Development for an Airborne Real-Time STAP
Demonsttration,” Proc. of the IEEE National Radar Conference, Syracuse, NY, May 13-
15, 1997.

[8] A. Choudhary, W. Liao, D. Weiner, P. Varshney, R. Linderman, M. Linderman, and R.
Brown, “Design, Implementation and Evaluation of Parallel Pipelined STAP on Parallel
Computers,” IEEE Trans. on Aerospace and Electrical Systems, vol. 36, pp 528-548,
April 2000.

http://www.afa.org/magazine/aug2002/0802radar.asp

28 September 2004 22

Acknowledgements

We wish to thank Honeywell Space Systems in Clearwater, FL for
their funding and technical guidance in support of this research.

We wish to thank MLDesign Technologies in Palo Alto, CA for
providing us the MLD simulation tool that made this work possible.

	Virtual Prototyping and Performance Analysis of RapidIO-based System Architectures for Space-Based Radar
	Outline
	Project Overview
	Background- RapidIO
	Background- GMTI
	GMTI Partitioning Methods- Straightforward
	GMTI Partitioning Methods- Staggered
	GMTI Partitioning Methods- Pipelined
	Model Library Overview
	RapidIO Models
	GMTI Processor Board Models
	System Design Constraints
	Backplane and System Models
	Overview of Experiments
	Result Latency Comparison
	Switch Memory Histogram with Straightforward Method
	Switch Memory Histogram with Staggered Method
	Switch Memory Histogram with Pipelined Method
	Average Parallel Efficiency
	Conclusions
	Bibliography
	Acknowledgements

