
MIT Lincoln LaboratoryHPEC 2004-1
JML 28 Sep 2004

Mapping Signal Processing Kernels to
Tiled Architectures

Henry Hoffmann
James Lebak [Presenter]

Massachusetts Institute of Technology
Lincoln Laboratory

Eighth Annual High-Performance Embedded
Computing Workshop (HPEC 2004)

28 Sep 2004
This work is sponsored by the Defense Advanced Research Projects Agency under Air Force Contract F19628-00-C-
0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily

endorsed by the United States Government.

MIT Lincoln LaboratoryHPEC 2004-2
JML 28 Sep 2004

Credits

• Implementations on RAW:
– QR Factorization: Ryan Haney
– CFAR: Edmund Wong, Preston Jackson
– Convolution: Matt Alexander

• Research Sponsor:
– Robert Graybill, DARPA PCA Program

MIT Lincoln LaboratoryHPEC 2004-3
JML 28 Sep 2004

Tiled Architectures

• Monolithic single-chip architectures are becoming rare in
the industry

– Designs become increasingly complex
– Long wires cannot propagate across the chip in one clock

• Tiled architectures offer an attractive alternative
– Multiple simple tiles (or “cores”) on a single chip
– Simple interconnection network (short wires)

• Examples exist in both industry and research
– IBM Power4 & Sun Ultrasparc IV each have two cores
– AMD, Intel expected to introduce dual-core chips in mid-2005
– DARPA Polymorphous Computer Architecture (PCA) program

MIT Lincoln LaboratoryHPEC 2004-4
JML 28 Sep 2004

PCA Block Diagrams
TRIPS (University of Texas)

Smart Memories (Stanford)

A
LU

RF
I$
PC

D$

RAW (MIT)

• All of these are examples of tiled
architectures

• In particular, RAW is a 4x4 array of tiles
– Small amount of memory per tile
– Scalar operand network allows delivery

of operands between functional units
– Plans for a 1024-tile RAW fabric

• This research aims to develop
programming methods for large tile
arrays

MIT Lincoln LaboratoryHPEC 2004-5
JML 28 Sep 2004

Outline

• Introduction
• Stream Algorithms and Tiled Architectures
• Mapping Signal Processing Kernels to RAW
• Conclusions

MIT Lincoln LaboratoryHPEC 2004-6
JML 28 Sep 2004

Stream Algorithms for Tiled
Architectures

Decoupled Systolic Architecture

M(R) edge
tiles are
allocated to
memory
management

P(R) inner tiles
perform
computation
systolically using
registers and static
network

lim E(σ,R) = 1
σ,R → ∞

Compute Efficiency Condition:

where σ = N/R

E (N,R) =
C(N)

T(N,R)*(P(R) + M(R))

Stream Algorithm Efficiency:

where
N = problem size
R = edge length of tile array
C(N) = number of operations
T(N,R) = number of time steps
P(R) + M(R) = total number of tiles

Stream algorithms achieve high efficiency by:
–Partitioning the problem into sub-problems
–Decoupling memory access from computation
–Hiding communication latency

Stream algorithms achieve high efficiency by:
–Partitioning the problem into sub-problems
–Decoupling memory access from computation
–Hiding communication latency

TimeTime SpaceSpace

R

MIT Lincoln LaboratoryHPEC 2004-7
JML 28 Sep 2004

Example Stream Algorithm:
Matrix Multiply

• Calculate C=A B
– Partition A into N/R row blocks,

B into N/R column blocks

• Computations can be pipelined
– Cost is 2R cycles to start and drain

the pipeline
– R cycles to output the result

Memory
tiles

= A BC

• In each phase, compute R2 elements of C
– Involves 2N operations per tile
– N2/R2 phases

N = problem size
R = edge length of tile array

Compute
tiles

Compute
tiles

Efficiency Calculation:

E (N,R) =
2N3

(2N(N2/R2)+3R)(R2+2R)

=
2σ3

2σ3+3

R

R+2
lim E(σ,R) = 1

σ,R → ∞

for σ = N/R

Achieves high efficiency as array size (N) & data size (R) growAchieves high efficiency as array size (N) & data size (R) grow

MIT Lincoln LaboratoryHPEC 2004-8
JML 28 Sep 2004

Matrix Multiply Efficiency

• Stream algorithms achieve high efficiency on large tile arrays
• We need to identify algorithms that can be recast as stream algorithms

• Stream algorithms achieve high efficiency on large tile arrays
• We need to identify algorithms that can be recast as stream algorithms

Assume a 4x4 decoupled systolic
architecture or RAW surrounded by
memory tiles (max efficiency=66%)

Scale the number of overall tiles
Smaller percentage of tiles devoted to
memory leads to higher efficiency

MIT Lincoln LaboratoryHPEC 2004-9
JML 28 Sep 2004

Analyzing the Matrix Multiply

Consider the matrix multiply computation in more detail
To compute cij, row i of A is multiplied by column j of B
• 2N inputs required
• 2N operations required

• Examine the directed acyclic graph
(DAG) for the matrix multiply

• For each output produced
• There are W inputs required (O(N))
• The input i is used Qi times (O(N))

– These are intermediate products
• The matrix multiply is an example of an

algorithm with a constant ratio of input
data (W) to intermediate products (Q)

a11
a12

a21
a22
b11
b21
b12
b22

c11

c12

c21

c22

A constant W/Q implies a degree of scale-invariance:
• Communication and computation maintain the same ratio as N increases
• Therefore the implementation can efficiently use more tiles on large problems

A constant W/Q implies a degree of scale-invariance:
• Communication and computation maintain the same ratio as N increases
• Therefore the implementation can efficiently use more tiles on large problems

MIT Lincoln LaboratoryHPEC 2004-10
JML 28 Sep 2004

Outline

• Introduction
• Stream Algorithms and Tiled Architectures
• Mapping Signal Processing Kernels to RAW

– QR Factorization
– Convolution
– CFAR
– FFT

• Conclusions

MIT Lincoln LaboratoryHPEC 2004-11
JML 28 Sep 2004

RAW Test Board
• Write kernels to run on prototype RAW board

– 4x4 RAW chip, 100 MHz
• MIT software includes cycle-accurate simulator

– Code written for the simulator easily runs on board
– Initial tests show good agreement between simulator and board

• Expansion connector allows direct access to RAW static network
– Firmware re-programming required
– External FPGA board streams data into and out of RAW
– Design streams data into ports on corner tiles
– Interface is not yet complete so present results are from simulator

Memory tiles
• Store intermediate values
• Stream data to and from computation tiles
Computation tiles
• Perform computation systolically
• Use static network and registers

I/O tiles
• Stream data to and from outside world

Typical RAW configuration for a
stream algorithm on prototype board:

Typical RAW configuration for a
stream algorithm on prototype board:

MIT Lincoln LaboratoryHPEC 2004-12
JML 28 Sep 2004

QR Factorization Mapping

Data flow during rotation computation Data flow during rotation application

For each block of columns
compute Givens rotations
apply Givens rotation to A

Algorithm to compute A=QR:

1

I/O

Memory

Compute

Unused

2 3

For a matrix A with six columns:

Column block

• I/O tiles are only used at start and end of process
– In-between, data is stored in memory tiles

• This shows the flow for odd-numbered column blocks
– For even-numbered blocks of columns, data flows from bottom memory

tiles to the top of the array

Store RStore R

Store
rotations
Store
rotations

Pass
rotations
Pass
rotations

Store R,
updated A
Store R,
updated A

MIT Lincoln LaboratoryHPEC 2004-13
JML 28 Sep 2004

Complex QR Factorization Performance

The QR
factorization has
a constant ratio
of input data (W)
to intermediate
products (Q)

M(R)

P(R)

R

N80

R N80
4 64
8 128
16 256
32 512

Projected matrix size N80
to achieve 80% efficiency
on compute tiles P(R):

The QR factorization efficiency scales to
100% as array and data size increase

The QR factorization efficiency scales to
100% as array and data size increase

MIT Lincoln LaboratoryHPEC 2004-14
JML 28 Sep 2004

Convolution (Time Domain) Mapping

Input Vector

Filter

Input
Vector
Filter

Result

Compute Tiles Memory and I/O Tiles

Result n+k-1…10

k-1…10

n-1…10

n+k-1…10

k-1
10

n-1…10

Stream 0

32 54 …
76 98 10 …11

Ti
le

 1

Ti
le

 2

Ti
le

 3

Ti
le

 4

Ti
le

 5

Ti
le

 0

Stream 1

• Filter coefficients distributed cyclically to tiles
– Each compute tile convolves the input with a subset of the filter
– Assume n (data length) > k (filter length)

• Each stream is a different convolution operation
– In multichannel signal processing applications we rarely perform

just one convolution
• 12 of 16 tiles used for computation

– Maximum 75% efficiency

MIT Lincoln LaboratoryHPEC 2004-15
JML 28 Sep 2004

Convolution Performance

• Convolution achieves good performance in RAW simulator
• Longer filters and input vectors are more efficient
• Longer input vectors are also more easily mapped to more

processors

MIT Lincoln LaboratoryHPEC 2004-16
JML 28 Sep 2004

CFAR Mapping

C(i,j,k)

G NcfarNcfar G

T(i,j,k)

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• For a long stream, CFAR requires 7 ops/cell
• Consider dividing up a stream over R tiles

– 7/R operations per tile
– N communication steps per tile
– Communication quickly dominates computation

• Instead consider parallel processing of streams

MIT Lincoln LaboratoryHPEC 2004-17
JML 28 Sep 2004

CFAR Mapping

C(i,j,k)

G NcfarNcfar G

T(i,j,k)

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• Goal is to move data through the chip as fast as
possible

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• Goal is to move data through the chip as fast as
possible

RAW Chip

• Data cube is streamed
into RAW using the static
network

• Corner input ports
receive data

• Each quadrant processes
data from one port

• One row of range data
(“one stream”) is
processed by a single tile

• Results gathered to
corner tile and output

Nrg Range Gates

• This implementation does not
scale with array size R

– As R increased, there would be a
greater latency involved in using
tiles in the center of the chip

MIT Lincoln LaboratoryHPEC 2004-18
JML 28 Sep 2004

CFAR Performance

• CFAR achieves an efficiency of 11-15%
– Efficiency on conventional architectures = 5-10%, similarly optimized
– RAW implementation benefits from large off-chip bandwidth

• Compute tile efficiency does not scale to 100% as for Stream
Algorithms (matrix multiply, convolution, QR)

Stream fits in cache Stream does not fit in cache

MIT Lincoln LaboratoryHPEC 2004-19
JML 28 Sep 2004

Data Flow for the FFT

For each of (log2N) stages
compute N/2 “butterflies”

Cooley-Tukey Radix-2 FFT: a

b

a+ωb

a-ωb

Radix-2 butterfly:
• 2 complex inputs
• precomputed weight ω
• 10 real operations

• For each output produced
• There are W inputs required (O(N))
• The input i is used Qi times

(O(log2N))
– These are intermediate computations

0 0

4

2

6

1

5

3

7

• W/Q is O(N/log2N)
– As N increases, communication requirements grow faster

than computation
– Therefore we expect that the Radix-2 FFT cannot efficiently

scale

MIT Lincoln LaboratoryHPEC 2004-20
JML 28 Sep 2004

Mapping the Radix-2 FFT to a Tile Array

• For each butterfly:
– 4 + (R-1) cycles to clock inputs across the array
– 10/R computations per tile
– When R=2, tiles are used efficiently

 Can overlap computation (5 cycles) and communication (5 cycles)
– When R>2, cannot use tiles efficiently

 Latency to clock inputs > number of ops per tile
• For each stage:

– Pipeline N/2 butterflies on R rows or columns
• Overall efficiency limited to 50%

– 2x2 compute tiles + 4 memory tiles

0
1
2
3

4
5
6
7

6 2 4 0

7 3 5 1

Stage 1:

3
1
2
0

7
5
6
4

0
2
1
3

4
6
5
7

Stage 2: Stage 3:

0 4

1 5

0 1

2 3

0 4 1 5 5 4 1 0
0
2

4
6

2 6 3 7 7 6 3 2

MIT Lincoln LaboratoryHPEC 2004-21
JML 28 Sep 2004

Mapping the Radix-R FFT to a Tile Array

Idea: use a Radix-R FFT algorithm on an R by R array

• A Radix-R FFT algorithm
– Uses logRN stages
– Compute N/R Radix-R butterflies per stage

• Implement the radix-R butterfly with an R-point DFT
– W, Q both scale with R for a DFT
– Allows us to use more processors for each stage
– Still becomes inefficient as R gets “too large”
– Efficiency limit for radix-4 algorithm = 56%
– Efficiency limit for radix-8 algorithm = 54%

• Radix-4 implementation:
– Distribute a radix-4 butterfly over 4 processors in a row or column
– Perform 4 butterflies in parallel
– 8 memory tiles required

MIT Lincoln LaboratoryHPEC 2004-22
JML 28 Sep 2004

Radix-4 FFT Algorithm Performance

Simulated Radix-4 FFT on 4x4 RAW plus 8 memory tiles

• Example: Radix-4 FFT algorithm achieves high throughput on 4x4 RAW
– Comparable efficiency to FFTW on G4, Xeon

• Raw efficiency stays high for larger FFT sizes G4, Xeon FFT results from
http://www.fftw.org/benchfft

MIT Lincoln LaboratoryHPEC 2004-23
JML 28 Sep 2004

Classifying Kernels
Kernels may be classified by the ratio W/Q
• Constant Ratio: W = O(N), Qi = O(N)

– e.g., Matrix Multiply, QR, Convolution
– Stream algorithms: efficiency approaches 1 as

R, N/R increase
• Sub-Linear Ratio: W=O(N), Qi < O(N);

– e.g., FFT
– Require trade-off between efficiency and

scalability
• Linear Ratio: W = O(N), Qi = O(1);

– e.g., CFAR
– Difficult to find efficient or scalable

implementation

Constant

Linea
r

W/Q

Sub-linear

Data set size, N

Examining W/Q gives insight into whether a stream algorithm
exists for the kernel

Examining W/Q gives insight into whether a stream algorithm
exists for the kernel

MIT Lincoln LaboratoryHPEC 2004-24
JML 28 Sep 2004

Conclusions

• Stream algorithms map efficiently to tiled arrays
– Efficiency can approach 100% as data size and array size

increase
– Implementations on RAW simulator show the efficiency of

this approach
– Will be moving implementations from simulator to board

• The communication-to-computation ratio W/Q gives insight
into the mapping process

– A constant W/Q seems to indicate a stream algorithm exists
– When W/Q is greater than a constant it is hard to efficiently

use more processors
• This research could form the basis for a methodology of

programming tile arrays
– More research and formalism required

