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Tiled Architectures

• Monolithic single-chip architectures are becoming rare in 
the industry

– Designs become increasingly complex
– Long wires cannot propagate across the chip in one clock

• Tiled architectures offer an attractive alternative
– Multiple simple tiles (or “cores”) on a single chip
– Simple interconnection network (short wires)

• Examples exist in both industry and research
– IBM Power4 & Sun Ultrasparc IV each have two cores
– AMD, Intel expected to introduce dual-core chips in mid-2005
– DARPA Polymorphous Computer Architecture (PCA) program
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PCA Block Diagrams
TRIPS (University of Texas)

Smart Memories (Stanford)
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RAW (MIT)

• All of these are examples of tiled 
architectures

• In particular, RAW is a 4x4 array of tiles
– Small amount of memory per tile 
– Scalar operand network allows delivery 

of operands between functional units
– Plans for a 1024-tile RAW fabric

• This research aims to develop 
programming methods for large tile 
arrays
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Outline

• Introduction
• Stream Algorithms and Tiled Architectures
• Mapping Signal Processing Kernels to RAW
• Conclusions
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Stream Algorithms for Tiled 
Architectures

Decoupled Systolic Architecture

M(R) edge 
tiles are 
allocated to 
memory 
management

P(R) inner tiles 
perform 
computation 
systolically using 
registers and static 
network

lim E(σ,R) = 1
σ,R → ∞

Compute Efficiency Condition:

where σ = N/R

E (N,R)  =
C(N)

T(N,R)*(P(R) + M(R))

Stream Algorithm Efficiency:

where
N = problem size
R = edge length of tile array
C(N) = number of operations
T(N,R) = number of time steps
P(R) + M(R) = total number of tiles

Stream algorithms achieve high efficiency by:
–Partitioning the problem into sub-problems
–Decoupling memory access from computation
–Hiding communication latency

Stream algorithms achieve high efficiency by:
–Partitioning the problem into sub-problems
–Decoupling memory access from computation
–Hiding communication latency

TimeTime SpaceSpace

R
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Example Stream Algorithm:
Matrix Multiply

• Calculate C=A B
– Partition A into N/R row blocks, 

B into N/R column blocks

• Computations can be pipelined
– Cost is 2R cycles to start and drain 

the pipeline
– R cycles to output the result

Memory 
tiles

= A BC

• In each phase, compute R2 elements of C
– Involves 2N operations per tile
– N2/R2 phases

N = problem size
R = edge length of tile array

Compute 
tiles

Compute 
tiles

Efficiency Calculation:

E (N,R)  =
2N3

(2N(N2/R2)+3R)(R2+2R)

=
2σ3

2σ3+3

R

R+2
lim E(σ,R) = 1

σ,R → ∞

for σ = N/R

Achieves high efficiency as array size (N) & data size (R) growAchieves high efficiency as array size (N) & data size (R) grow
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Matrix Multiply Efficiency

• Stream algorithms achieve high efficiency on large tile arrays
• We need to identify algorithms that can be recast as stream algorithms

• Stream algorithms achieve high efficiency on large tile arrays
• We need to identify algorithms that can be recast as stream algorithms

Assume a 4x4 decoupled systolic 
architecture or RAW surrounded by 
memory tiles (max efficiency=66%)

Scale the number of overall tiles
Smaller percentage of tiles devoted to 
memory leads to  higher efficiency
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Analyzing the Matrix Multiply

Consider the matrix multiply computation in more detail
To compute cij, row i of A is multiplied by column j of B
• 2N inputs required 
• 2N operations required

• Examine the directed acyclic graph 
(DAG) for the matrix multiply

• For each output         produced
• There are W inputs       required (O(N))
• The input i is used        Qi times (O(N))

– These are intermediate products
• The matrix multiply is an example of an 

algorithm with a constant ratio of input 
data (W) to intermediate products (Q)

a11
a12

a21
a22
b11
b21
b12
b22

c11

c12

c21

c22

A constant W/Q implies a degree of scale-invariance:
• Communication and computation maintain the same ratio as N increases
• Therefore the implementation can efficiently use more tiles on large problems 

A constant W/Q implies a degree of scale-invariance:
• Communication and computation maintain the same ratio as N increases
• Therefore the implementation can efficiently use more tiles on large problems 
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Outline

• Introduction
• Stream Algorithms and Tiled Architectures
• Mapping Signal Processing Kernels to RAW

– QR Factorization
– Convolution
– CFAR
– FFT

• Conclusions 



MIT Lincoln LaboratoryHPEC 2004-11
JML 28 Sep 2004

RAW Test Board
• Write kernels to run on prototype RAW board

– 4x4 RAW chip, 100 MHz
• MIT software includes cycle-accurate simulator

– Code written for the simulator easily runs on board
– Initial tests show good agreement between simulator and board

• Expansion connector allows direct access to RAW static network 
– Firmware re-programming required
– External FPGA board streams data into and out of RAW
– Design streams data into ports on corner tiles
– Interface is not yet complete so present results are from simulator

Memory tiles
• Store intermediate values
• Stream data to and from computation tiles
Computation tiles
• Perform computation systolically
• Use static network and registers

I/O tiles
• Stream data to and from outside world

Typical RAW configuration for a 
stream algorithm on prototype board:

Typical RAW configuration for a 
stream algorithm on prototype board:
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QR Factorization Mapping

Data flow during rotation computation Data flow during rotation application

For each block of columns
compute Givens rotations 
apply Givens rotation to A

Algorithm to compute A=QR:

1

I/O

Memory

Compute

Unused

2 3

For a matrix A with six columns:

Column block

• I/O tiles are only used at start and end of process 
– In-between, data is stored in memory tiles

• This shows the flow for odd-numbered column blocks
– For even-numbered blocks of columns, data flows from bottom memory 

tiles to the top of the array

Store RStore R

Store 
rotations
Store 
rotations

Pass 
rotations
Pass 
rotations

Store R, 
updated A
Store R, 
updated A
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Complex QR Factorization Performance

The QR  
factorization has 
a constant ratio
of input data (W) 
to intermediate 
products (Q)

M(R)

P(R)

R

N80

R N80
4 64
8 128
16 256
32 512

Projected matrix size N80
to achieve 80% efficiency 
on compute tiles P(R):

The QR factorization efficiency scales to 
100% as array and data size increase

The QR factorization efficiency scales to 
100% as array and data size increase
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Convolution (Time Domain) Mapping

Input Vector

Filter

Input 
Vector
Filter

Result

Compute Tiles Memory and I/O Tiles

Result n+k-1…10

k-1…10

n-1…10

n+k-1…10

k-1
10

n-1…10

Stream 0

32 54 …
76 98 10 …11

Ti
le

 1

Ti
le

 2

Ti
le

 3

Ti
le

 4

Ti
le

 5

Ti
le

 0

Stream 1

• Filter coefficients distributed cyclically to tiles
– Each compute tile convolves the input with a subset of the filter
– Assume n (data length) > k (filter length)

• Each stream is a different convolution operation
– In multichannel signal processing applications we rarely perform 

just one convolution
• 12 of 16 tiles used for computation

– Maximum 75% efficiency
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Convolution Performance

• Convolution achieves good performance in RAW simulator
• Longer filters and input vectors are more efficient
• Longer input vectors are also more easily mapped to more 

processors
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CFAR Mapping

C(i,j,k)

G NcfarNcfar G

T(i,j,k)

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• For a long stream, CFAR requires 7 ops/cell
• Consider dividing up a stream over R tiles

– 7/R operations per tile
– N communication steps per tile
– Communication quickly dominates computation

• Instead consider parallel processing of streams
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CFAR Mapping

C(i,j,k)

G NcfarNcfar G

T(i,j,k)

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• Goal is to move data through the chip as fast as 
possible

• Constant False-Alarm Rate (CFAR) Detection
• For each output:

– There are W = O(Ncfar) inputs required
– The input i is used Qi = O(1) times

• Goal is to move data through the chip as fast as 
possible

RAW Chip

• Data cube is streamed 
into RAW using the static 
network

• Corner input ports 
receive data

• Each quadrant processes 
data from one port

• One row of range data 
(“one stream”) is 
processed by a single tile

• Results gathered to 
corner tile and output

Nrg Range Gates

• This implementation does not 
scale with array size R

– As R increased, there would be a 
greater latency involved in using 
tiles in the center of the chip
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CFAR Performance

• CFAR achieves an efficiency of 11-15%
– Efficiency on conventional architectures = 5-10%, similarly optimized
– RAW implementation benefits from large off-chip bandwidth

• Compute tile efficiency does not scale to 100% as for Stream 
Algorithms (matrix multiply, convolution, QR)

Stream fits in cache Stream does not fit in cache
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Data Flow for the FFT

For each of (log2N) stages
compute N/2 “butterflies” 

Cooley-Tukey Radix-2 FFT: a

b

a+ωb

a-ωb

Radix-2 butterfly:
• 2 complex inputs
• precomputed weight ω
• 10 real operations

• For each output         produced
• There are W inputs       required (O(N))
• The input i is used        Qi times 

(O(log2N))
– These are intermediate computations

0 0

4

2

6

1

5

3

7

• W/Q is O(N/log2N)
– As N increases, communication requirements grow faster 

than computation
– Therefore we expect that the Radix-2 FFT cannot efficiently 

scale  
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Mapping the Radix-2 FFT to a Tile Array

• For each butterfly:
– 4 + (R-1) cycles to clock inputs across the array
– 10/R computations per tile
– When R=2, tiles are used efficiently

 Can overlap computation (5 cycles) and communication (5 cycles)
– When R>2, cannot use tiles efficiently

 Latency to clock inputs > number of ops per tile
• For each stage:

– Pipeline N/2 butterflies on R rows or columns
• Overall efficiency limited to 50%

– 2x2 compute tiles + 4 memory tiles
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Mapping the Radix-R FFT to a Tile Array

Idea: use a Radix-R FFT algorithm on an R by R array

• A Radix-R FFT algorithm 
– Uses logRN stages
– Compute N/R Radix-R butterflies per stage

• Implement the radix-R butterfly with an R-point DFT
– W, Q both scale with R for a DFT
– Allows us to use more processors for each stage
– Still becomes inefficient as R gets “too large”
– Efficiency limit for radix-4 algorithm = 56%
– Efficiency limit for radix-8 algorithm = 54%

• Radix-4 implementation:
– Distribute a radix-4 butterfly over 4 processors in a row or column
– Perform 4 butterflies in parallel
– 8 memory tiles required
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Radix-4 FFT Algorithm Performance

Simulated Radix-4 FFT on 4x4 RAW plus 8 memory tiles

• Example: Radix-4 FFT algorithm achieves high throughput on 4x4 RAW
– Comparable efficiency to FFTW on G4, Xeon

• Raw efficiency stays high for larger FFT sizes G4, Xeon FFT results from 
http://www.fftw.org/benchfft
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Classifying Kernels
Kernels may be classified by the ratio W/Q
• Constant Ratio: W = O(N), Qi = O(N)

– e.g., Matrix Multiply, QR, Convolution
– Stream algorithms: efficiency approaches 1 as 

R, N/R increase
• Sub-Linear Ratio: W=O(N), Qi < O(N); 

– e.g., FFT
– Require trade-off between efficiency and 

scalability
• Linear Ratio: W = O(N), Qi = O(1); 

– e.g., CFAR
– Difficult to find efficient or scalable 

implementation

Constant

Linea
r

W/Q

Sub-linear

Data set size, N

Examining W/Q gives insight into whether a stream algorithm
exists for the kernel

Examining W/Q gives insight into whether a stream algorithm
exists for the kernel
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Conclusions

• Stream algorithms map efficiently to tiled arrays
– Efficiency can approach 100% as data size and array size 

increase
– Implementations on RAW simulator show the efficiency of 

this approach
– Will be moving implementations from simulator to board

• The communication-to-computation ratio W/Q gives insight 
into the mapping process

– A constant W/Q seems to indicate a stream algorithm exists
– When W/Q is greater than a constant it is hard to efficiently 

use more processors
• This research could form the basis for a methodology of 

programming tile arrays
– More research and formalism required




