
Ananian/Rinard: Language-Level Transactions, HPEC '04

Language-level Transactions for
Modular Reliable Systems

C. Scott Ananian Martin Rinard
cananian@csail.mit.edu rinard@csail.mit.edu

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

HPEC 2004

Ananian/Rinard: Language-Level Transactions, HPEC '04

Outline

● Problems with traditional software development
– lock ordering
– proper atomicity
– fault-tolerance
– priority inversion

● Language-level Transactions
● How?

– Software implementation
– Hardware implementation
– Both!

● Conclusions

Ananian/Rinard: Language-Level Transactions, HPEC '04

Programming Reliable Systems
(is hard)

Ananian/Rinard: Language-Level Transactions, HPEC '04

Conventional Locking: Ordering

● When more than one object is involved in a
critical region, deadlocks may occur!
– Thread 1 grabs A then tries to grab B
– Thread 2 grabs B then tries to grab A
– No progress possible!

● Solution: all locks ordered
– A before B
– Thread 1 grabs A then B
– Thread 2 grabs A then B
– No deadlock

Ananian/Rinard: Language-Level Transactions, HPEC '04

Conventional Locking: Ordering
● Maintaining lock order is a lot of work!
● Programmer must choose, document, and

rigorously adhere to a global locking protocol for
each object type
– development overhead!

● All symmetric locked objects must include lock
order field, which must be assigned uniquely
– space overhead!

● Every multi-object lock operation must include
proper conditionals
– which lock do I take first? which do I take next?
– execution-time overhead!

● No exceptions!

Ananian/Rinard: Language-Level Transactions, HPEC '04

Multi-object atomic update

● Programmer's mental model of locks can be
faulty

● Monitor synchronization: associates locks with
objects

● Promises modularity: locking code stays with
encapsulated object implementation

● Often breaks down for multiple-object scenarios
● End result: unreliable software, broken

modularity

Ananian/Rinard: Language-Level Transactions, HPEC '04

A problem with multiple objects
public final class StringBuffer ... {
 private char value[];
 private int count;
 ...
 public synchronized StringBuffer append(StringBuffer sb) {
 ...
A:int len = sb.length();
 int newcount = count + len;
 if (newcount > value.length)
 expandCapacity(newcount);
 // next statement may use state len
B:sb.getChars(0, len, value, count);
 count = newcount;
 return this;
 }
 public synchronized int length() { return count; }
 public synchronized void getChars(...) { ... }
}

Ananian/Rinard: Language-Level Transactions, HPEC '04

Fault-tolerance

● Locks are irreversible
● When a thread fails holding a lock, the system

will crash
– it's only a matter of time before someone else

attempts to grab that lock

● What are the proper semantics for exceptions
thrown within a critical region?
– data structure consistency not guaranteed

● Asynchronous exceptions?

Ananian/Rinard: Language-Level Transactions, HPEC '04

Priority Inversion

● Well-known problem with locks

● Described by Lampson/Redell in 1980 (Mesa)

● Mars Pathfinder in 1997, etc, etc, etc

● Low-priority task takes a lock needed by a high-
priority task -> the high priority task must wait!

● Clumsy solution: the low priority task must
become high priority

● What if the low priority task takes a long time?

Ananian/Rinard: Language-Level Transactions, HPEC '04

Outline

● Problems with traditional software development
– lock ordering
– proper atomicity
– fault-tolerance
– priority inversion

● Language-level Transactions
● How?

– Software implementation
– Hardware implementation
– Both!

● Conclusions

Ananian/Rinard: Language-Level Transactions, HPEC '04

Programming Reliable Systems
(is easy?)

Ananian/Rinard: Language-Level Transactions, HPEC '04

Language-level Transactions

● Locks are the wrong model for expressing
synchronization!

● Atomicity is a more natural (and modular) way to
specifying the system

● Let's use transactions to implement atomic
regions

● What sort of transactions do we want?

Ananian/Rinard: Language-Level Transactions, HPEC '04

Transactions (definition)

● A transaction is a sequence of loads and stores
that either commits or aborts

● If a transaction commits, all the loads and stores
appear to have executed atomically

● If a transaction aborts, none of its stores take
effect

● Transaction operations aren't visible until they
commit or abort

● Simplified version of traditional ACID database
transactions (no durability, for example)

Ananian/Rinard: Language-Level Transactions, HPEC '04

Non-blocking synchronization
● Although transactions can be implemented with mutual

exclusion (locks), we are interested only in non-blocking
implementations.

● In a non-blocking implementation, the failure of one
process cannot prevent other processes from making
progress. This leads to:

– Scalable parallelism

– Fault-tolerance

– Safety: freedom from some problems which require careful
bookkeeping with locks, including priority inversion and
deadlocks

● Little known requirement: limits on trans. suicide

Ananian/Rinard: Language-Level Transactions, HPEC '04

Making StringBuffer atomic
public final class StringBuffer ... {
 private char value[];
 private int count;
 ...
 public synchronized StringBuffer append(StringBuffer sb) {
 ...
A:int len = sb.length();
 int newcount = count + len;
 if (newcount > value.length)
 expandCapacity(newcount);
 // next statement may use state len
B:sb.getChars(0, len, value, count);
 count = newcount;
 return this;
 }
 public synchronized int length() { return count; }
 public synchronized void getChars(...) { ... }
}

Ananian/Rinard: Language-Level Transactions, HPEC '04

Making StringBuffer atomic
public final class StringBuffer ... {
 private char value[];
 private int count;
 ...
 public atomic StringBuffer append(StringBuffer sb) {
 ...
A:int len = sb.length();
 int newcount = count + len;
 if (newcount > value.length)
 expandCapacity(newcount);
 // next statement may use state len
B:sb.getChars(0, len, value, count);
 count = newcount;
 return this;
 }
 public atomic int length() { return count; }
 public atomic void getChars(...) { ... }
}

Ananian/Rinard: Language-Level Transactions, HPEC '04

Solving the lock ordering problem
void pushFlow(Vertex v1, Vertex v2, double flow) {
 v1.excess -= flow; /* Move excess flow from v1 */
 v2.excess += flow; /* ...to v2 */
}

● Simple network flow algorithm
● “Flow” moved from node to node in the graph
● Updates to two different objects
● Serial version above requires a complicated

parallel version when using locks

Ananian/Rinard: Language-Level Transactions, HPEC '04

Solving the lock ordering problem
void pushFlow(Vertex v1, Vertex v2, double flow) {
 v1.excess -= flow; /* Move excess flow from v1 */
 v2.excess += flow; /* ...to v2 */
}

void pushFlow(Vertex v1, Vertex v2, double flow) {
 Object lock1, lock2;
 if (v1.id < v2.id) { /* avoid deadlock */
 lock1 = v1; lock2 = v2;
 } else {
 lock1 = v2; lock2 = v1;
 }
 synchronized (lock1) {
 synchronized (lock2) {
 v1.excess -= flow; /* Move excess flow from v1 */
 v2.excess += flow; /* ...to v2 */
 }
 }
}

Ananian/Rinard: Language-Level Transactions, HPEC '04

Solving the lock ordering problem
void pushFlow(Vertex v1, Vertex v2, double flow) {
 v1.excess -= flow; /* Move excess flow from v1 */
 v2.excess += flow; /* ...to v2 */
}

void pushFlow(Vertex v1, Vertex v2, double flow) {
 atomic {
 v1.excess -= flow; /* Move excess flow from v1 */
 v2.excess += flow; /* ...to v2 */
 }
}

● Specifying desired atomicity property directly is
much simpler for the programmer!

Ananian/Rinard: Language-Level Transactions, HPEC '04

Addressing reliability, fault
tolerance, and priority inversion

● A proper implementation of the transaction
mechanism allows constant-time abort

– Allows us to solve priority inversion by aborting
the low-priority thread!

● Atomicity properties are modular – no global
lock ordering required

● A reasonable semantics for exceptions: critical
region aborted/undone. No dangling locks.

● Failure of one thread will not cause the system to
fail!

Ananian/Rinard: Language-Level Transactions, HPEC '04

Programming Reliable Systems
(is hard)

● Problems with traditional software development
– lock ordering
– proper atomicity
– fault-tolerance
– priority inversion

● Language-level Transactions
● How?

– Software implementation
– Hardware implementation
– Both!

● Conclusions

Ananian/Rinard: Language-Level Transactions, HPEC '04

Software Transaction
Implementation
● Goals:

– Non-transactional operations should be fast
– Reads should be faster than writes
– Minimal amount of object bloat

● Solution:
– Use special FLAG value to indicate “location

involved in a transaction”
– Object points to a linked list of versions,

containing values written by (in-progress,
committed, or aborted) transactions

– Semantic value of FLAGged field is: “value of the
first version owned by a committed transaction
on the version list”

– Values which are “really” FLAG are handled with
an escape mechanism

Ananian/Rinard: Language-Level Transactions, HPEC '04

Transactions using version lists

Transaction ID #23

Transaction ID #56Transaction ID #68

VersionVersion

Object #2

Object #1

Version Version

FLAG

'B'

FLAG

'A'
FLAG

2.71828

{OID25}

OtherClass

MyClass

FLAG

3.14159
FLAG

23 55

FLAG

WAITING COMMITTED

COMMITTED

owner

next

field1

field2field2

field1

next

owner

type

versions

readers

field1

field2

field2

field1

{OID68}
readers

versions

type

owner

next

field1

field2 field2

field1

next

owner

statusstatus

status

.
. . .

. . .
.

Ananian/Rinard: Language-Level Transactions, HPEC '04

Performance
● Non-transactional code only needs to check

whether a memory operand is FLAG before
continuing.

– On superscalar processors, there are plenty of
extra functional units to do the check

– The branch is extremely predictable

– This gives only a few % slowdown

● Once FLAGged, transactional code operates
directly on the object’s “version”

● Creating versions can be an issue for large
arrays; use “functional array” techniques

Ananian/Rinard: Language-Level Transactions, HPEC '04

Non-blocking algorithms are hard!
● In published work on Synthesis, a non-blocking

operating system implementation, three separate
races were found:
– One ABA problem in LIFO stack
– One likely race in MP-SC FIFO queue
– One interesting corner case in quaject callback

handling
● It's hard to get these right! Ad hoc reasoning

doesn't cut it.
● Non-blocking algorithms are too hard for the

programmer
● Let's get it right once (and verify this!)

Ananian/Rinard: Language-Level Transactions, HPEC '04

The Spin Model Checker
● Spin is a model checker for communicating

concurrent processes. It checks:
– Safety/termination properties
– Liveness/deadlock properties
– Path assertions (requirements/never claims)

● It works on finite models, written the Promela
language, which describe infinite executions.

● Explores the entire state space of the model,
including all possible concurrent executions,
verifying that Bad Things don't happen.

● Not an absolute proof – pretty useful in practice
● Make systems reliable by concentrating

complexity in a verifiable component

Ananian/Rinard: Language-Level Transactions, HPEC '04

Spin theory
● Generates a Büchi Automaton from the Promela

specification.
– Finite-state machine w/ special acceptance

conditions
– Transitions correspond to executability of

statements
● Depth-first search of state space, with each state

stored in a hashtable to detect cycles and
prevent duplication of work
– If x followed by y leads to the same state as y

followed by x, will not re-traverse the succeeding
steps

● If memory is not sufficient to hold all states, may
ignore hashtable collisions: requires one bit per
entry. # collisions provides approximate
coverage metric

Ananian/Rinard: Language-Level Transactions, HPEC '04

Verified Software Transactions

● Modelled the software transaction
implementation in Promela

● Low-level model – every memory operation
represented

● Spin used 16G of memory to exhaustively verify
the implementation within a 6-version 2-object
scope.

Ananian/Rinard: Language-Level Transactions, HPEC '04

Hardware Implementation
● Following earlier work by Knight '86, Herlihy and

Moss '92, '93
● Cache is used to store uncommitted

transactional state (marked with a T bit)
● Main memory contains 'backup state'
● Cache-coherence protocol extended to

coordinate transactions
● Our recent work (Ananian, Asanović, Kuszmaul,

Leiserson, Lie HPCA 2005) overcomes
transaction-size limitations in earlier designs

● Near-zero performance overhead.
– Piggy-backs on existing cache coherency traffic

Ananian/Rinard: Language-Level Transactions, HPEC '04

Hardware Transaction Cache
Organization

● Each cache line gets a “T” bit indicating that this
line is involved in a transaction

● On abort, “T” lines are invalidated
● On commit, the T bits are cleared
● Overflow mechanism

Overflow
Handler

index offset

datatagdatatag

Overflow Storage

Uncached DRAM

tag
Address

Way 0 Way 1

Overflow
base register

T TO . . .

. . .

Ananian/Rinard: Language-Level Transactions, HPEC '04

Register File Modifications
● Minor

modifications to
the processor
rename table to
support register
restore after
transaction
abort.

1

0

FIFO

FIFO

To Register Renaming Table

Physical Registers

active

commit

free

Reorder Buffer

active

Rename Table

Register
Free List

Register Reserved
List

P56
P56

S

S

P2

. . .

S

S
P56

LPR

P127

P56

P0

snapshots
saved?

R31

R0

snapshots

. . .

Ananian/Rinard: Language-Level Transactions, HPEC '04

Hardware/Software Implementation
● Hardware transaction implementation is very

fast! But it is limited:
– Slow once you exceed Cache capacity
– Transaction lifetime limits (context switches)
– Limited semantic flexibility (nesting, etc)

● Software transaction implementation is unlimited
and very flexible!
– But transactions may be slow

● Solution: failover from hardware to software
– Simplest mechanism: after first hardware abort,

execute transaction in software
– Need to ensure that the two algorithms play nicely

with each other (consistent views)

Ananian/Rinard: Language-Level Transactions, HPEC '04

Overcoming HW size limitations
● Simple node-push benchmark
● As xaction size increases, we eventually run out

of cache space in the HW transaction scheme

0

50

100

150

200

250

300

1 5 9 13 17 21 25 29 33 37 41 45 49

Transaction Size (Number of Nodes x 100)

C
y

c
le

s
 p

e
r

N
o

d
e

HTM

STM

HTM Transactions
stop fitting after
this point

Ananian/Rinard: Language-Level Transactions, HPEC '04

Overcoming HW size limitations
● Simple node-push benchmark
● Hybrid scheme best of both worlds!

0

50

100

150

200

250

300

1 5 9 13 17 21 25 29 33 37 41 45 49

Transaction Size (Number of Nodes x 100)

C
y

c
le

s
 p

e
r

N
o

d
e

HTM

STM

HSTM

Ananian/Rinard: Language-Level Transactions, HPEC '04

Conclusions
● Language-level transactions provide a more-

modular way to build reliable concurrent
systems.

● Transactions can reduce software complexity
and eliminate common programmer mistakes

● We've implemented a transaction mechanism for
Java programs using software, hardware, and (in
progress) joint approaches using the FLEX
compiler infrastructure.

● Transactions can be efficient and practical to
use!

