

High Productivity MPI – Grid, Multi-cluster and Embedded Systems Extensions

Presented by

Dr. Anthony Skjellum

Chief Software Architect Verari systems Software, Inc

> September 30, 2004 HPEC Workshop

IMPI

- IMPI Interoperable Message Passing Interface
- Developed and Proposed by NIST
- Standard for inter-operation of multiple
 - Implementations (IMPI, IMPI-2)
 - Architectures
 - Networks
 - Operating Systems

Client, Host Concept

- MPI processes spread across multiple clients
- Clients represent MPI processes belonging to a single implementation
- Hosts represent gateways for processes of Clients
- IMPI Application may have two or more clients
- Client may have one or more hosts
- Hosts serve as gateways for one or more MPI processes

Typical Scenario – Multi-vendor MPI

- 3 Clients (Each cluster make one client)
- •Client 1
 - •2 hosts, 2 MPI processes
- •Client 2
 - •1 host, 3 MPI processes

•Client 3

•2 host, 6 MPI processes

MPI/Pro 1.7.0

- MPI/Pro 1.7.0 provides first complete implementation of IMPI
- Enables Interoperation between
 - Windows, Linux and Mac OSX operating systems
 - 32-bit and 64-bit architectures
 - TCP, GM and VAPI Networks
 - Any combination of all the above

Extensions

- IMPI does not address issues such as
 - Private IP Addresses
 - Owner domains
 - Faults
 - Interacting Dynamic Groups
- Above issues play vital role in Grid
- Verari proposed and implemented a novel method to address issue of Private IP Addresses

Case Study

Private IP Enabled IMPI

Typical Cluster Setup

•Compute Nodes have private IP addresses

•External communication through single head node or gateway

•Unsuitable for multicluster multi-site communication

Network Address Translation (NAT)

•Firewalls block incoming connections

•NAT used to serve requests generated within the cluster

NAT-based IMPI

•Use NAT to generate dynamic mappings between head node and compute nodes

•Dissipate dynamic mapping info through IMPI server

•Release mapped ports on head node on completion of application

Performance

Configuration	Latency (us)
MPI/Pro without IMPI	142.45
MPI/Pro with IMPI	147.35

Performance

Proposed Extensions

- IMPI extensions for MPI-2
- Open protocol-based initialization such as SOAP
- Adaptation to the Grid
- Reduce user involvement
- Optimize for performance

References

- Velusamy, V et al. Communication Strategies for Private-IP-Enabled Interoperable Message Passing across Grid Environments, First International Workshop on Networks for Grid Applications, 2004.
- MPI Forum. *MPI: A Message-Passing Interface Standard*. 1994. <u>http://www.mpi-forum.org/docs</u>.
- IMPI Steering Committee. *IMPI Draft Standard*. 1999. http://impi.nist.gov/IMPI/.
- Gropp, W. et al. A High-Performance Portable Implementation of the Message-Passing Interface. Journal of Parallel Computing, 22, 1996, pp: 789-828.
- Skjellum, A. and McMahon, T. Interoperability of Message-Passing Interface Implementations: a Position Paper. <u>http://www.verarisoft.com/publications/files/interop121897.pdf</u>