Data Distribution Service

Gerardo Pardo-Castellote, Ph.D.
Real-Time Innovations, Inc.

DDS Standard

Data Distribution Service for Real-Time Systems
« Adopted in June 2003
« Finalized in June 2004
« Joint submission (RTI, THALES, MITRE, OIS)
 API specification for Data-Centric Publish-Subscribe communication
for distributed real-time systems.

RTI's role
» Member of OMG since 2000
« Co-authors of the original DDS RFP
» Co-authors of the DDS specification adopted in June 2003
» Chair of the DDS Finalization Task Force completed March 2004
 Chair of the DDS Revision Task Force
» Providers of a COTS implementation of the specification (NDDS.4.0)

ol

OBRJECT MANAGEMENT GROUP

© Real-Time Innovations.All Rights Reserved.

OMG Middleware standards

CORBA DDS

Distributed object Distributed data
» Client/server » Publish/subscribe
 Remote method calls e Multicast data
* Reliable transport « Configurable QoS
Best for Best for
« Remote command processing * Quick dissemination to many nodes
* File transfer * Dynamic nets
e Synchronous transactions » Flexible delivery requirements

DDS and CORBA address different needs
-

-— ell[d —>

Complex systems often need both...

© Real-Time Innovations.All Rights Reserved.

More Complex Distributed Application | 277>

e, FEIl,Cam

* New nodes are not dynamically “Discovered”
» Socket connections needed for each path

* Future upgrades require “re-design” =

%‘,
* App SW must perform endian conversion .y
Linux

4
/
/
/
4
/
/

Temp Sensor

© Real-Time Innovations.All Rights Reserved.

The net-centric vision

Vision for “net-centric applications”

Total access to information for real-time
applications

This vision is enabled by the internet and
related network technologies

Challenge:

“Provide the right information at the right place
at the right time... no matter what.”

© Real-Time Innovations.All Rights Reserved.

Challenges: Factors driving DDS

Need for speed
Large networks, multicast
High data rates
Natural asynchrony
Tight latency requirements
Continuously-refreshed data

Complex data flows
e Controlled QoS: rates, reliability, bandwidth
* Per-node, or per-stream differences
« Varied transports (incl. Unreliable e.g. wireless)

Dynamic configurations
e Fast location transparency

Fault tolerance
* No single-points of failure
« Transparent failover

© Real-Time Innovations.All Rights Reserved.

DDS

Provides a “Global Data Space” that is accessible to
all interested applications.
Data objects addressed by Topic and Key
Subscriptions are decoupled from Publications
Contracts established by means of QoS
Automatic discovery and configuration

Node

Distributed =

Global Data Space >N

Distributed .
Node

© Real-Time Innovations.All Rights Reserved.

Distributed
Node

Distributed
Node

Distributed
Node

Distributed
Node

Data object addressing: Keys RT/)

Address in Global Data Space = (Topic, Key)
Multiple instances of the same topic

« Used to sort specific instances * Topic key can
be any field

* Do not need a separate Topic for : within the Topic.
each data-object instance : Example:

struct LocationInfo
{
int LoclID; /lkey
GPSPos pos;

h

Data
Reader

%)
o
o
)
o
o
—
3)
o
—

Loc 2, GPS Pos
Loc 3, GPS Pos

Subscriber

© Real-Time Innovations.All Rights Reserved.

DDS communications model
Track

Failed to ‘ Failed to
produce | get data

[
Offered
Listener QoS Listener

data

Publisher declares information it has and specifies the Topic
e ... and the offered QoS contract

« ... and an associated listener to be alerted of any significant status
changes

Subscriber declares information it wants and specifies the Topic
» ... and the requested QoS contract

e ... and an associated listener to be alerted of any significant status
changes

DDS automatically discovers publishers and subscribers
 DDS ensures QoS matching and alerts of inconsistencies

© Real-Time Innovations.All Rights Reserved.

DCPS Entities R 77 3

Topic

| Publisher | | DomainParticipant [['subscriber
< ~

SA

o @

/ /

| DataWriter | Publisher | DataReader |

DomainParticipant ~ Represents participation of the application in the communication
collective

DataWriter ~ Accessor to write typed data on a particular Topic

Publisher ~ Aggregation of DataWriter objects. Responsible for disseminating
information.

DataReader ~ Accessor to read typed data regarding a specific Topic

Subscriber ~ Aggregation of DataReader objects. Responsible for receiving information

© Real-Time Innovations.All Rights Reserved.

Domains and _Participa
Domain \ Domain
\

4
AN

na?
/, .\ , 1
| DomainParticipant | | Domain |

© Real-Time Innovations.All Rights Reserved.

DDS Publication RT/I)

e, FEIl,Cam

User Application:
Domain Participant » Creates all DDS entities
» Configures entity QoS

Data Associates DW with Topic
Writer * Provides data to DW

Publisher

© Real-Time Innovations.All Rights Reserved.

Example: Publication

Publisher publisher = domain->create publisher(
publisher qos,
publisher listener);

Topic topic = domain->create topic(
“Track™, “TrackStruct”,
topic_qgos, topic_listener);

DataWriter writer = publisher->create datawriter(
topic, writer_gos, writer_listener);
TrackStructDataWriter twriter =
TrackStructDataWriter: narrow(writer);

TrackStruct my_ track;
twriter->write(&my_ track);

© Real-Time Innovations.All Rights Reserved.

DDS Subscription Listener RT/

Listener:
read,take

User Application: Domain Participant
» Creates all DDS entities

» Configures entity QoS y
» Associates DR with Topic

* Receives Data from DR using
a Listener

Listener

: Listener
Subscriber

© Real-Time Innovations.All Rights Reserved.

Example: Subscription

Subscriber subs = domain->create_subscriber(
subscriber _gos, subscriber_listener);

Topic topic = domain->create topic(
“Track”, “TrackStruct”,
topic_qos, topic_listener);

DataReader reader = subscriber->create datareader(
topic, reader _gos, reader_listener);

// Use listener-based or wairt-based access

© Real-Time Innovations.All Rights Reserved.

How to get data (listener-based)

Listener listener = new MyListener();
reader->set_ listener(listener);

MyListener::on_data available(DataReader reader)
{
TrackStructSeq received data;
SamplelnfoSeq sample i1nfo;
TrackStructDataReader treader =
TrackStructDataReader: -narrow(reader);

treader->take(&received data,
&sample_info, ..)

// Use received data

© Real-Time Innovations.All Rights Reserved.

QoS Contract “Request / Offered”

/QOS:DurabiIity
QoS:Presentation
QoS:Deadline

QoS:Ownership
QoS:Liveliness
_QoS:Reliability

N

[
Offered

QoS

© Real-Time Innovations.All Rights Reserved.

~

QoS:Latency Budget

.

_/

QoS Request / Offered:
Ensure that the compatible
QoS parameters are set.

@ QoS not
. compatible
" /

.

QoS: History: Last x or All é—ﬁ)

KEEP_LAST: “depth” KEEP_ALL.

int for th b f Publisher: keep all until delivered
Integer for the number o Subscriber: keep each sample

samples to keep at any one until the application processes
time ~ that instance

~

Data Data
Writer Reader

eepLast KeeplLast4

Publisher Subscriber Subscriber

JEEREE

© Real-Time Innovations.All Rights Reserved.

QoS: Deadline é—ﬁ)

e, FEIl,Cam

‘ Commits Failed to
to provide get data
data each
deadline

Listener

period.

Publisher Expegts data_ every
deadline period.

deadline

J

© Real-Time Innovations.All Rights Reserved.

0S: Liveliness — Type, Duration /ﬁ-)

e, FEIl,Cam

Type:
AUTOMATIC = Infrastructure Managed

Domain MANUAL = Application Managed

Participant . Domain Participant

| Iease_du!ation Liveliness Message

© Real-Time Innovations.All Rights Reserved.

QoS: Time Based Filter é—ﬁ)

e, FEIl,Cam

“minimum_separation”: Data Reader
not want to receive
data faster than the

Domain .) .
min_separation time

Participant

Discarded
samples

€ >

minimum separation Data Samples

© Real-Time Innovations.All Rights Reserved.

QoS: Quality of Service (1/2)

QoS Policy Concerns Changeable

DEADLINE T,DR,DW YES

LATENCY BUDGET T,DR,DW YES

READER DATA LIFECYCLE DR YES

WRITER DATA LIFECYCLE DW YES

TRANSPORT PRIORITY YES

LIFESPAN YES

LIVELINESS NO

TIME BASED FILTER

RELIABILITY

DESTINATION ORDER

© Real-Time Innovations.All Rights Reserved.

QoS: Quality of Service (2/2) RT7)

www, FEI, C&m

QoS Policy Concerns Changeable

USER DATA DP,DR,DW YES

TOPIC DATA T YES

GROUP DATA P,S YES

ENTITY FACTORY YES

PRESENTATION NO

OWNERSHIP NO

OWNERSHIP STRENGTH

PARTITION

DURABILITY

HISTORY

RESOURCE LIMITS

© Real-Time Innovations.All Rights Reserved.

Summary

DDS targets applications that need to distribute data
In a real-time environment

DDS is highly configurable by QoS settings

DDS provides a shared “global data space”
Any application can publish data it has

Any application can subscribe to data it needs
Automatic discovery

Facilities for fault tolerance
Heterogeneous systems easily accommodated

Distributed
Global Data Node
Distributed Space

Node

Node

© Real-Time Innovations.All Rights Reserved.

hank you

References:
OMG DDS specification:
http://www.omg.org/cqgi-bin/doc?ptc/04-04-12
General material on DDS and RTI's implementation:
http://www.rti.com/dds
Comments/questions: gerardo@rti.com

