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DDS Standard
Data Distribution Service for Real-Time Systems

• Adopted in June 2003
• Finalized in June 2004
• Joint submission (RTI, THALES, MITRE, OIS)
• API specification for Data-Centric Publish-Subscribe communication 
for distributed real-time systems.

RTI’s role
• Member of OMG since 2000
• Co-authors of the original DDS RFP
• Co-authors of the DDS specification adopted in June 2003
• Chair of the DDS Finalization Task Force completed March 2004
• Chair of the DDS Revision Task Force
• Providers of a COTS implementation of the specification (NDDS.4.0)
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OMG Middleware standards

DDS
Distributed data

• Publish/subscribe
• Multicast data
• Configurable QoS

Best for
• Quick dissemination to many nodes
• Dynamic nets
• Flexible delivery requirements

CORBA
Distributed object

• Client/server
• Remote method calls
• Reliable transport

Best for
• Remote command processing
• File transfer
• Synchronous transactions

DDS and CORBA address different needs

Complex systems often need both…
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More Complex Distributed Application

Temp Sensor

Socket Connections

• New nodes are not dynamically “Discovered” 
• Socket connections needed for each path
• Future upgrades require “re-design”
• App SW must perform endian conversion 

Solaris

Windows

App SW

App SW

App SW

RTOS

App SW

Linux



© Real-Time Innovations.All Rights Reserved.

The net-centric vision

Vision for “net-centric applications”
Total access to information for real-time 

applications
This vision is enabled by the internet and 

related network technologies
Challenge:

“Provide the right information at the right place 
at the right time… no matter what.”
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Challenges: Factors driving DDS

Need for speed
• Large networks, multicast
• High data rates
• Natural asynchrony              
• Tight latency requirements
• Continuously-refreshed data

Complex data flows
• Controlled QoS: rates, reliability, bandwidth
• Per-node, or per-stream differences
• Varied transports (incl. Unreliable e.g. wireless)

Dynamic configurations
• Fast location transparency

Fault tolerance
• No single-points of failure
• Transparent failover
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DDS

Provides a “Global Data Space” that is accessible to 
all interested applications.

• Data objects addressed by Topic and Key
• Subscriptions are decoupled from Publications
• Contracts established by means of QoS
• Automatic discovery and configuration
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Data object addressing: Keys

• Used to sort specific instances

• Do not need a separate Topic for 
each data-object instance

• Topic key can 
be any field 
within the Topic.

Example:

Topic

Address in Global Data Space = (Topic, Key)
Multiple instances of the same topic

Lo
c 

1,
  G

PS
 P

os

Lo
c 

2,
  G

PS
 P

os

Lo
c 

3,
  G

PS
 P

os

S2S1

1
2
3

1
2
3

1
2
3

4

Data
Reader

Subscriber

struct LocationInfo 
{

int LocID; //key 
GPSPos pos;

};
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DDS communications model
Track

Offered
QoS

Requested
QoSListener

Failed to 
produce 

data

Listener

Failed to 
get data

Publisher declares information it has and specifies the Topic
• … and the offered QoS contract
• … and an associated listener to be alerted of any significant status 

changes
Subscriber declares information it wants and specifies the Topic

• … and the requested QoS contract
• … and an associated listener to be alerted of any significant status 

changes
DDS automatically discovers publishers and subscribers

• DDS ensures QoS matching and alerts of inconsistencies
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DCPS Entities
Topic

DomainParticipantPublisher

DataWriter

Subscriber

DataReaderPublisher

DomainParticipant ~ Represents participation of the application in the communication 
collective

DataWriter ~ Accessor to write typed data on a particular Topic

Publisher ~ Aggregation of DataWriter objects. Responsible for disseminating 
information.

DataReader ~ Accessor to read typed data regarding a specific Topic

Subscriber ~ Aggregation of DataReader objects. Responsible for receiving information
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Domains and Participants
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DDS Publication

Domain Participant

Topic

User Application:
• Creates all DDS entities
• Configures entity QoS
• Associates DW with Topic
• Provides data to DW

Data 
Sample

S

Data
Writer

Publisher



© Real-Time Innovations.All Rights Reserved.

Example: Publication
Publisher publisher = domain->create_publisher(

publisher_qos, 
publisher_listener);

Topic topic = domain->create_topic(
“Track”, “TrackStruct”,
topic_qos, topic_listener);

DataWriter writer = publisher->create_datawriter( 
topic, writer_qos, writer_listener);

TrackStructDataWriter twriter = 
TrackStructDataWriter::narrow(writer);

TrackStruct my_track;
twriter->write(&my_track);



© Real-Time Innovations.All Rights Reserved.

DDS Subscription Listener

User Application:
• Creates all DDS entities
• Configures entity QoS
• Associates DR with Topic
• Receives Data from DR using 
a Listener
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Example: Subscription

Subscriber  subs = domain->create_subscriber( 
subscriber_qos, subscriber_listener);

Topic topic = domain->create_topic(
“Track”, “TrackStruct”, 
topic_qos, topic_listener);

DataReader reader = subscriber->create_datareader( 
topic, reader_qos, reader_listener);

// Use listener-based or wait-based access
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How to get data (listener-based)
Listener listener = new MyListener();
reader->set_listener(listener);

MyListener::on_data_available( DataReader reader )
{

TrackStructSeq received_data;
SampleInfoSeq sample_info;
TrackStructDataReader treader =

TrackStructDataReader::narrow(reader);

treader->take( &received_data, 
&sample_info, …)

// Use received_data
}
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QoS Contract “Request / Offered”
QoS Request / Offered: 

Ensure that the compatible 
QoS parameters are set.

QoS:Durability
QoS:Presentation
QoS:Deadline
QoS:Latency_Budget
QoS:Ownership
QoS:Liveliness
QoS:Reliability

Offered
QoS

Requested
QoS

X

QoS not 
compatible

Communication not established
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Data
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Publisher
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QoS:  History: Last x or All

Data
Writer

Keep All

KEEP_LAST: “depth” 
integer for the number of 
samples to keep at any one 
time
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QoS:  Deadline
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DEADLINE “deadline period”
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QoS: Liveliness – Type, Duration
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MANUAL = Application Managed
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QoS:  Time_Based_Filter
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QoS:  Quality of Service (1/2)

QoS Policy Concerns RxO Changeable

DEADLINE T,DR,DW YES YES

LATENCY BUDGET T,DR,DW YES YES

READER DATA LIFECYCLE DR N/A YES

WRITER DATA LIFECYCLE DW N/A YES

TRANSPORT PRIORITY T,DW N/A YES

LIFESPAN T,DW N/A YES

LIVELINESS T,DR,DW YES NO

TIME BASED FILTER DR N/A YES

RELIABILITY T,DR,DW YES NO

DESTINATION ORDER T,DR NO NO
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QoS:  Quality of Service (2/2)

QoS Policy Concerns RxO Changeable

USER DATA DP,DR,DW NO YES

TOPIC DATA T NO YES

GROUP DATA P,S NO YES

ENTITY FACTORY DP, P, S NO YES

PRESENTATION P,S YES NO

RESOURCE LIMITS T,DR,DW NO NO

OWNERSHIP T YES NO

OWNERSHIP STRENGTH DW N/A YES

PARTITION P,S NO YES

DURABILITY T,DR,DW YES NO

HISTORY T,DR,DW NO NO



© Real-Time Innovations.All Rights Reserved.

DDS targets applications that need to distribute data 
in a real-time environment

DDS is highly configurable by QoS settings

DDS provides a shared “global data space” 
• Any application can publish data it has
• Any application can subscribe to data it needs
• Automatic discovery
• Facilities for fault tolerance
• Heterogeneous systems easily accommodated

Summary 
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Thank you

References:
OMG DDS specification: 

http://www.omg.org/cgi-bin/doc?ptc/04-04-12
General material on DDS and RTI’s implementation: 

http://www.rti.com/dds
Comments/questions: gerardo@rti.com




