Session 5: Standards Overview

High Performance Embedded Computing (HPEC) Workshop 9:05 AM on September 30, 2004 for 2 hours, 20 minutes

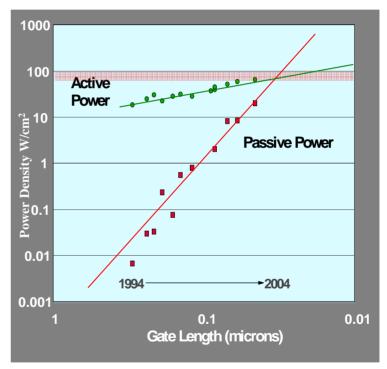
Session Chair: Craig Lund CTO Mercury Computer Systems clund@mc.com +1 (978) 967 1264

Standards Triple Witching Hour

- Hello commodity fabric
- Hello enhanced packaging
- Hello unique processor
 - FPGA, GPU, game chip, etc.

Expectations

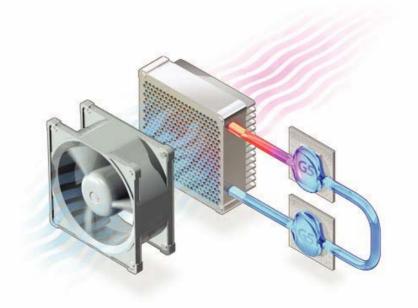
- Computer users expect unrelenting Moore's Law improvements
 - In 1965 Moore observed that the number of transistors fabricated per square inch doubled every 12 months
 - Later revised to 18 months
- Moore said nothing about improved
 - GigaFLOPS per dollar or watt or square inch
 yet each is a metric that our community expects will follow Moore's Law



Gordon Moore

Public Enemy #1

- Increasing "passive power"
 - Has stalled the entire industry with respect to offering customers improved performance per watt.
- What is it?
 - Current flows across regions
 of semiconductor structure in
 which no current should be
 flowing.



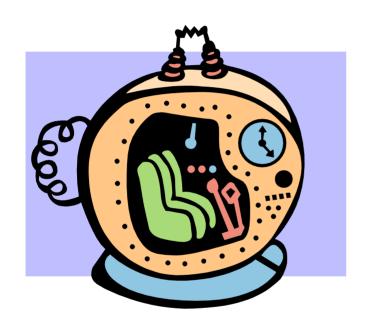
IBM Microelectronics Graph

Example: Apple Liquid Cooling

• On June 9th Apple announced a 2.5 GHz IBM 970 system that uses liquid cooling. Apple uses a high capacity variation of the heat pipes found in laptops.

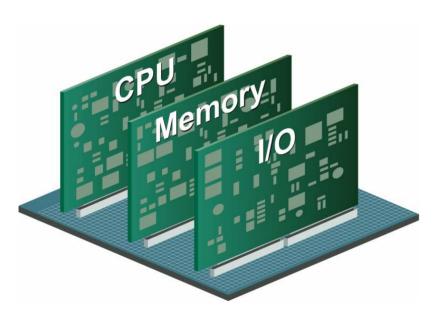
Heat Busters!

- Mercury/VME Community: VITA 48
- Intel/PICMG: AdvancedTCA® and MicroTCA
- Intel/IBM: Open BladeCenter™

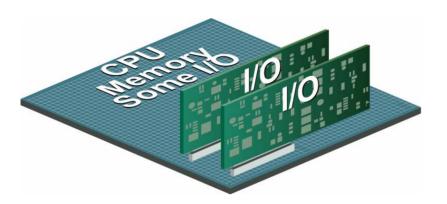


Infrastructure Talks

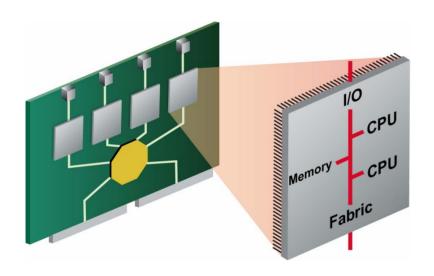
- Prior HPEC years have featured VITA 42 (VXS) and ATCA.
- After the break, Mercury's Randy Banton will quickly overview all of VITA's infrastructure activities, including VITA 48.
- Pentek's Paul Mesibov will follow Randy to give more details on VITA 49, also known as DigitallF.


Architecture Drives Interconnect Standards

 The next three slides look backwards in time. They show that, as computer technology gets smaller, internal interconnect requirements evolve.


Architecture Circa 1980

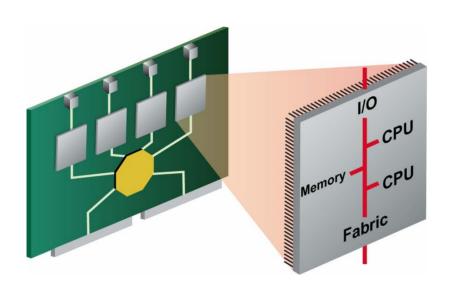
 Computers contained multiple circuit boards connected by a shared bus.


Architecture Circa 1990

- When CPU and memory could fit onto a single card, the bus connection off the board became I/O oriented.
- PCI bus was first deployed around 1994 and quietly found its way into embedded devices

Architecture Today

- System-on-a-chip (SOC) technology has evolved the basic architecture of an embedded system from master/slave toward peer-to-peer.
- Mercury pioneered this basic architecture within the embedded domain with ANSI/VITA RACEway in 1993. We joined with Motorola to develop what became RapidIO[®] in 2000.



No Fabric Talks

- We have covered fabrics extensively in past HPEC workshops.
 HPEC-oriented products are now shipping.
- I put the architecture slides into this summary for another reason . . .

Software Standards Delayed

- Today's SOC architecture impacts the software model. Everything becomes a little multicomputer.
- Commercial OS and middleware vendors are responding with proprietary solutions that enable DMA transfers among the sea of peer SOC processors.
- So far users appear content to accept proprietary APIs provided the enabling software runs on hardware from multiple vendors.

Changing Focus

- Past HPEC solutions targeted stand-off applications.
- Looking forward, HPEC solutions will move in-theater.
- The impact on software is to raise the importance of the intheater network. Think grid computing.

Today's Software Advances in Adjacent Domains

- Thus today's software talks:
 - RTI will discuss their publish/subscribe technology, standardized by OMG and recommended in the Navy Open Architecture.
 - Verari (RackSaver plus MPI SoftTech) will discuss multiple vendor interoperability of MPI implementations.

Session Agenda

9:05	15 min	Standards Overview Craig Lund
9:20	25 min	GPUs: Engines for Future HPC (invited) Dr. John Owens of UC Davis
9:45	25 min	OMG Data Distribution Service (DDS) Mr. Gerardo Pardo-Castellote of RTI
10:10	25 min	High Productivity MPI Dr. Tony Skjellum of Verari Systems Software
Break (view next session's posters)		
10:55	15 min	HPEC Related VITA Standards: An Update Mr. Randy Banton of Mercury
11:10	15 min	DigitallF Interface Standardization Mr. Paul Mesibov of Pentek

Invited GPU Talk

- Some people are using GPUs today for computation. Few standards exist at this point. Nevertheless . . .
- The HPEC Program Committee
 decided to invite an expert to give us a
 broad introduction to this new
 application of a technology that all of
 us already have.
- I yield the podium to Dr. John Owens, an assistant professor at UC Davis.

