VSIPL++- Parallel

Performance
HPEC 2004

CodeSourcery, LLC
September 30, 2004

(% CODESOURCERY 1

Challenge

© “Object oriented technology reduces
software cost.” fw

© “Fully utilizing HPEC systems for SIP
applications requires managing operations
at the lowest possible level.”

© “There Is great concern that these two
approaches may be fundamentally at
odds.”

(& CoDESoURCERY 2

Parallel Performance Vision

ultiprocessor
SIP Support
VSIPL++ PP
Program
API
Code SIMD

Support
_.tmg~ “Drastically reduce the performance S “Automated to reduce
penalties associated with deploying = implementation cost.”

object-oriented software on high
performance parallel embedded
systems.”

(& CoDESoURCERY 3

Advantages of VSIPL

© Portability
© Code can be reused on any system for which a VSIPL
Implementation is available.
© Performance
© Vendor-optimized implementations perform better than
most handwritten code.
© Productivity
© Reduces SLOC count. g
© Code is easier to read. Parformanca (154
© Skills learned on one project are applicable to others.
© Eliminates use of assembly code.

& 2

(& CoDESoURCERY L

Limitations of VSIPL

© Uses C Programming Language

© “Modern object oriented languages (e.g., C++) have
con5|stently reduced the development time of software

projects.’ y

© Manual memory management.
© Cumbersome syntax.

© Inflexible

© Abstractions prevent users from adding new high-
performance functionality.

© No provisions for loop fusion.
© No way to avoid unnecessary block copies.

© Not Scalable
© No support for MPI or threads.

© SIMD support must be entirely coded by vendor; user
cannot take advantage of SIMD directly.

l

(& CoDESoURCERY 5

Parallelism: Current Practice

MPI used for communication, but:

© MPI code often a significant fraction of
total program code.

© MPI code notoriously hard to debug.

© Tendency to hard-code number of
processors, data sizes, etc. k21
© Reduces portability!

© Conclusion: users should specify only data
layout.

(& CoDESoURCERY 6

Atop VSIPL’s Foundation

VSIPL VSIPL++
: Scalable Multiprocessor
Serial :
Computation
Extensible:

Limited Extensibility Operators, data formats, etc.

C++: OOP, memory

C Programming Language management

Optimized Vendor Implementations: High Performance

Open Standard: Specification, Reference Implementation

(& CoDESoURCERY 7

Leverage VSIPL Model

© Same terminology:
© Blocks store data.
©Views provide access to data.
© Etc.

© Same basic functionality:
© Element-wise operations.
© Signal processing.
© Linear algebra.

(& CoDESoURCERY 8

VSIPL++ Status

© Serial Specification: Version 1.0a
© Support for all functionality of VSIPL.

© Flexible block abstraction permits varying data storage
formats.

© Specification permits loop fusion, efficient use of
storage.

© Automated memory management.
© Reference Implementation: Version 0.95
© Support for functionality in the specification.
© Used in several demo programs — see next talks.
© Built atop VSIPL reference implementation for maximum
portability.
© Parallel Specification: Version 0.5
© High-level design complete.

(& CoDESoURCERY 9

k-QQ Beamformer

Input:

© Noisy signal
arriving at a row of
uniformly

distributed
Sensors. M,

Output:

© Bearing and
frequency of signal ©,
sources.

@ CODESOURCERY 10

SIP Primitives Used

© Computation:
© FIR filters
© Element-wise operations (e.g, magsq)
© FFTs
© Minimum/average values

© Communication:
© Corner-turn
© All-to-all communication

© Minimum/average values
© Gather

(& CoDESoURCERY 11

Computation

1. Filter signal to remove high-
frequency noise. ¢

2. Remove side-lobes resulting from
discretization of data. (mun

3. Apply Fourier transform in time
domain. (FFT)

4. Apply Fourier transform in space
domain. (FFT)

5. COmpUte power SpeCtra. (mult, magsq)

(& CoDESoURCERY 12

Diagram of the Kernel

Input weights qyy_wise

FIR FFT

. > * >

/ /

one row

removes side lobes :
per sensor “corner turn” from sensor optional
domain to time domain corner
. turn
column-wise
magsq, FFT
*1/n

{0 {0

!

Add this
matrix to
the sum.

(& CoDESoURCERY 13

VSIPL Kernel

Seven statements required:

for (i =n; 1 >0; —-1) {
filtered = Tilter (firs, signal);
vsip_mmul_f (weights, filtered, filtered);
vsip_rcftftmpop f (space fft, filtered,
fft_output);
vsip_ccfftmpi_f (time_ fft, fft output);
vsip_mcmagsq_T (fft_output, power);
vsip_ssmul f (1.0 / n, power);
vsip_madd_f (power, spectra, spectra);

(& CoDESoURCERY 14

VSIPL++ Kernel

One statement required:

for (i = n; 1 >0; —-1)
spectra += 1/n *
magsq (
time fft (space fft (weights *
filter (firs,
signal)));

No changes are required for distributed operation.

(& CoDESoURCERY 15

Distribution In User Code

Serial case:

Matrix<float_t, Dense<2, float_t> >
signal _matrix;

Parallel case:

typedef Dense<2, float t> subblock;

typedef Distributed<2, float t, subblock, ROW>
Block2R t;

Matrix<float t, Block2R_t> signal _matrix;

User writes no MPI code.
(& CoDESoURCERY 16

VSIPL++ Implementation

© Added DistributedBlock:

© Uses a “standard” VSIPL++ block on
each processor.

© Uses MPI routines for communication
when performing block assignment.

© Added specializations:

O FFT, FIR, etc. modified to handle
DistributedBlock.

(& CoDESoURCERY 17

Performance Measurement

© Test system:
© AFRL HPC system
©2.2GHz Pentium 4 cluster

© Measured only main loop
© No Iinput/output

© Used Pentium Timestamp Counter

e MPI All-to-all not included In timings
© Accounts for 10-25%

(& CoDESoURCERY 18

VSIPL++ Performance

%)
e,
c
O 10 -
(&)
)
n
0.1 Problem Size
| 256x512 512x1024 1024x2048 2048x4096
——VSIPL 3.3 15 64 306
—8— VSIPL++ 3.5 15 66 314
|| VSIPL++ (1) 3.6 15 63 277
—%— || VSIPL++ (2) 1.9 9 37 165
—%— || VSIPL++ (4) 0.9 4 19 /8
—e— |1 VSIPL++ (8) 0.4 2 9 40

(& CODESOURCERY 19

Parallel Speedup

15% -
2 proV*\ Minimal parallel overhead.
10% A 10% slower than
/ ¥ perfect linear speedup
©
D 4 processes
S35 5o
a g 5%
- g 8 processes
8 0 . perfect Iinsar speedup
. 0% * , ~
-c?j 8 VSIPL, VSIPL++
g c 1 process
[504 4
. 5%
C>) = S
oo Corner turn improves execution. > 10% faster than
0 perfect linear speedup
-15% Problem Size
256x512 512x1024 1024x2048 2048x4096
—o— VSIPL 0% 0% 0% 0%
—— VSIPL++ 1% 0% 0% 0%
I VSIPL++ (1) 6% 0% -6% -14%
—%—] VSIPL++ (2) 8% 14% 6% -6%
—%— || VSIPL++ (4) 3% 11% 5% -7%
—— || VSIPL++ (8) 1% 4% 5% -8%

(& CODESOURCERY

20

Conclusions

© VSIPL++ imposes no overhead:

© VSIPL++ performance nearly identical
to VSIPL performance.

o VSIPL++ achieves near-linear
parallel speedup:

© No tuning of MPI, VSIPL++, or
application code.

© Absolute performance limited by
VSIPL implementation, MPI
Implementation, compiler.

(& CoDESoURCERY 21

VSIPL++

Visit the HPEC-SI website
http://www.hpec-si.org
© for VSIPL++ specifications

© for VSIPL++ reference
Implementation

© to participate in VSIPL++
development

(& CoDESoURCERY 22

VSIPL++: Parallel

Performance

HPEC 2004

CodeSourcery, LLC
September 30, 2004

(5 CODESOURCERY

23

	Abstract:

