
VSIPL++: Parallel
Performance

HPEC 2004

CodeSourcery, LLC
September 30, 2004

1

Challenge

“Object oriented technology reduces
software cost.”

“Fully utilizing HPEC systems for SIP
applications requires managing operations
at the lowest possible level.”

“There is great concern that these two
approaches may be fundamentally at
odds.”

2

Parallel Performance Vision

VSIPL++
API SIMD

Support

Multiprocessor
SupportSIP

Program
Code

“Automated to reduce
implementation cost.”

“Drastically reduce the performance
penalties associated with deploying
object-oriented software on high
performance parallel embedded
systems.”

3

Advantages of VSIPL
Portability

Code can be reused on any system for which a VSIPL
implementation is available.

Performance
Vendor-optimized implementations perform better than
most handwritten code.

Productivity
Reduces SLOC count.
Code is easier to read.
Skills learned on one project are applicable to others.
Eliminates use of assembly code.

4

Limitations of VSIPL
Uses C Programming Language

“Modern object oriented languages (e.g., C++) have
consistently reduced the development time of software
projects.”
Manual memory management.
Cumbersome syntax.

Inflexible
Abstractions prevent users from adding new high-
performance functionality.
No provisions for loop fusion.
No way to avoid unnecessary block copies.

Not Scalable
No support for MPI or threads.
SIMD support must be entirely coded by vendor; user
cannot take advantage of SIMD directly.

5

Parallelism: Current Practice

MPI used for communication, but:
MPI code often a significant fraction of
total program code.
MPI code notoriously hard to debug.
Tendency to hard-code number of
processors, data sizes, etc.

Reduces portability!

Conclusion: users should specify only data
layout.

6

Atop VSIPL’s Foundation
VSIPL VSIPL++

Open Standard: Specification, Reference Implementation

Optimized Vendor Implementations: High Performance

C Programming Language C++: OOP, memory
management

Extensible:
Operators, data formats, etc.Limited Extensibility

Scalable Multiprocessor
ComputationSerial

7

Leverage VSIPL Model

Same terminology:
Blocks store data.
Views provide access to data.
Etc.

Same basic functionality:
Element-wise operations.
Signal processing.
Linear algebra.

8

VSIPL++ Status
Serial Specification: Version 1.0a

Support for all functionality of VSIPL.
Flexible block abstraction permits varying data storage
formats.
Specification permits loop fusion, efficient use of
storage.
Automated memory management.

Reference Implementation: Version 0.95
Support for functionality in the specification.
Used in several demo programs — see next talks.
Built atop VSIPL reference implementation for maximum
portability.

Parallel Specification: Version 0.5
High-level design complete.

9

k-Ω Beamformer

ω1

ω2

Input:
Noisy signal
arriving at a row of
uniformly
distributed
sensors.

Output:
Bearing and
frequency of signal
sources.

10

SIP Primitives Used
Computation:

FIR filters
Element-wise operations (e.g, magsq)
FFTs
Minimum/average values

Communication:
Corner-turn

All-to-all communication

Minimum/average values
Gather

11

Computation

1. Filter signal to remove high-
frequency noise. (FIR)

2. Remove side-lobes resulting from
discretization of data. (mult)

3. Apply Fourier transform in time
domain. (FFT)

4. Apply Fourier transform in space
domain. (FFT)

5. Compute power spectra. (mult, magsq)

12

Diagram of the Kernel
input weights

13

FIR
*

row-wise
FFT

magsq,
*1/n

one row
per sensor

column-wise
FFT

Add this
matrix to
the sum.

optional
corner
turn

“corner turn” from sensor
domain to time domain

removes side lobes

VSIPL Kernel

Seven statements required:

for (i = n; i > 0; --i) {
filtered = filter (firs, signal);
vsip_mmul_f (weights, filtered, filtered);
vsip_rcfftmpop_f (space_fft, filtered,

fft_output);
vsip_ccfftmpi_f (time_fft, fft_output);
vsip_mcmagsq_f (fft_output, power);
vsip_ssmul_f (1.0 / n, power);
vsip_madd_f (power, spectra, spectra);

}

14

15

VSIPL++ Kernel
One statement required:

No changes are required for distributed operation.

for (i = n; i > 0; --i)
spectra += 1/n *
magsq (
time_fft (space_fft (weights *

filter (firs,
signal)));

Distribution in User Code

Serial case:

Parallel case:

User writes no MPI code.

Matrix<float_t, Dense<2, float_t> >
signal_matrix;

typedef Dense<2, float_t> subblock;
typedef Distributed<2, float_t, subblock, ROW>
Block2R_t;

Matrix<float_t, Block2R_t> signal_matrix;

16

VSIPL++ Implementation

Added DistributedBlock:
Uses a “standard” VSIPL++ block on
each processor.
Uses MPI routines for communication
when performing block assignment.

Added specializations:
FFT, FIR, etc. modified to handle
DistributedBlock.

17

Performance Measurement

Test system:
AFRL HPC system
2.2GHz Pentium 4 cluster

Measured only main loop
No input/output

Used Pentium Timestamp Counter
MPI All-to-all not included in timings

Accounts for 10-25%

18

VSIPL++ Performance

0.1

1

10

100

1000

Problem Size

S
e

co
n

d
s

VSIPL 3.3 15 64 306

VSIPL++ 3.5 15 66 314

|| VSIPL++ (1) 3.6 15 63 277

|| VSIPL++ (2) 1.9 9 37 165

|| VSIPL++ (4) 0.9 4 19 78

|| VSIPL++ (8) 0.4 2 9 40

256x512 512x1024 1024x2048 2048x4096

19

Parallel Speedup

-15%

-10%

-5%

0%

5%

10%

15%

Problem Size

O
v

e
rh

e
a

d
 C

o
m

p
a

re
d

to
 L

in
e

a
r

S
p

e
e

d
u

p

VSIPL 0% 0% 0% 0%

VSIPL++ 1% 0% 0% 0%

|| VSIPL++ (1) 6% 0% -6% -14%

|| VSIPL++ (2) 8% 14% 6% -6%

|| VSIPL++ (4) 3% 11% 5% -7%

|| VSIPL++ (8) 1% 4% 5% -8%

256x512 512x1024 1024x2048 2048x4096

2 processes

4 processes

8 processes

1 process

VSIPL, VSIPL++

perfect linear speedup

10% slower than
perfect linear speedup

10% faster than
perfect linear speedup

Corner turn improves execution.

Minimal parallel overhead.

20

Conclusions

VSIPL++ imposes no overhead:
VSIPL++ performance nearly identical
to VSIPL performance.

VSIPL++ achieves near-linear
parallel speedup:

No tuning of MPI, VSIPL++, or
application code.

Absolute performance limited by
VSIPL implementation, MPI
implementation, compiler.

21

VSIPL++

Visit the HPEC-SI website
http://www.hpec-si.org

for VSIPL++ specifications
for VSIPL++ reference
implementation
to participate in VSIPL++
development

22

VSIPL++: Parallel
Performance

HPEC 2004

CodeSourcery, LLC
September 30, 2004

23

	Abstract:

