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VSIPL++ Demonstration

 HPEC-SI is moving VSIPL functionality to object
oriented programming and C++: VSIPL++

e Goal of this demonstration:
— Evaluate the draft VSIPL++ Serial Specification

— ldentify both advantages and problems with the VSIPL++
methodology

— Suggest improvements

e Method

— Port a DoD acoustic beamformer algorithm written in
standard C to use VSIPL++ and C++

— Measure and Evaluate (when compared to baseline code)
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Deployable Autonomous Distributed
System (DADS)

« DADS Goals
— Develop and demonstrate deployable autonomous

undersea technology to improve the Navy’s
capability to conduct effective Anti-Submarine

Warfare and Intelligence-Surveillance-
Reconnaissance operations in shallow water

e Sponsor: ONR 321

http://www.onr.navy.mil/sci_tech/ocean/321 sensing/info_deploy.htm
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Tactical Information
Network

* Sensors, Arrays & Sources
— Acoustic
— Electromagnetic

e Communication Links
— RF buoys & AUV gliders
— Acoustic modems

* In-Node Signal Processing
— Acoustic, passive & active
— Electromagnetic
— Sensor data fusion

» Master Node
— Network control
— Network data fusion

DADS Concept

SATCOM
Data Link




DADS Beamformer

e Signal processing program chosen for
conversion is DADS multi-mode beamformer

— Adaptive minimum variance distortionless
response

e Current software iIs ...
— Sequential ANSI C
— About 1400 lines of C source code
— Pointer-ized -- no vectorization
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Approach

e Establish test data and environment to execute and
validate current code

e Analyze existing code and data structures

e Vectorize

 Rewrite module using VSIPL++

e Validate VSIPL++ version

e Report specification issues and code metrics

Used pre-release of CodeSourcery sequential
VSIPL++ reference implementation which in
turn uses the VSIPL reference implementation
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Deliverables

e Metrics
— SLOC
— Lines changed if appropriate
— Time to develop
— Others

e Report results and lessons learned
— HPEC-SI workshop

— DADS Annual Program Review for ONR, project
personnel, industrial partner (Undersea Sensor
Systems Inc.)
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Initial Steps

e Established testable code baseline
— Wrapped module in executable program
— Set up test data file and associated parameters
— Set up validation procedures

 Analyzed baseline code
— Figured out what algorithms were implemented
— Mapped program data flow
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Data Flow Map
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Dual Implementations

e Starting from scratch based on analysis of
original program
— Insight, trial approaches to sub-problems

e Incremental modification of original program
— Vectorization
e Un-pointerize
e Reorder tests within loops
e Recast loops into vector and matrix operations
— VSIPL++ -ization

— This version chosen for final solution and
metrics
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Example of Typical Code

frptr = fr; // pointer to replica buffer (real)
fiptr = fi; // pointer to replica buffer (imag)

for (ifreq = ibinl; i1freq <= i1bin2; i1freq++)

// produce one row of the weight matrix at a time
for (iang = O; iang < nang; i1ang++) // loop over bearings
for (i = 0; 1 < nh; 1++) // copy a row of the replica
sr[i] = *frptr;
si[i] = *fiptr;
frptr++;
fiptr++;

for (i = 0; 1 < nh; 1++) // loop over hydrophones
wr[i] = wt[i] * sr[i];
wi[i] = wt[i1] * si[i]:;

for (int ifreq = ibinl; ifreq <= ibin2; ifreq++)
w = vsip::vmmul<O>(wt, replica.get xy(ifreg-ibinl));
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Code Metrics

e Number of files increased from 8 to 14

e SLOC for all source files
— Counting semicolons:
e Baseline 887
e VSIPL++ 630 -29%
— Counting non-blank, non-comment lines:
e Baseline 1389
e VSIPL++ 1018 -27%

e Heart of the beamformer calculation (all lines):
e Baseline 410
e VSIPL++ 180  -56%

e Lines of code changed: Most!
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Memory Size Metrics

e Binary program sizes (statically linked):
HP-UX/PA-RISC Red Hat/Pentium
— Baseline 560 KB 700 KB
— VSIPL++ 1,800 KB 3,900 KB

e Memory footprint and usage:
— Weren't able to measure this

— VSIPL++ programs might be expected to use
larger structures

e For example, N vectors become a matrix

— For this program’s statically allocated structures
and arrays, it should be a wash
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Test Cases

64 Input sensors, 64
output beams

64x64 covariance matrix
Forward FFTs 64 x 1024
Inverse FFTs 64 x 1024
Smaller data set

Fewer larger objects
created, more
computing per object
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14 input sensors,
108 output beams

14x14 covariance matrix
Forward FFTs 14 x 2048
Inverse FFTs 108 x 2048
Larger data set

More smaller objects
created, object creation
amortized over less
computing
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Execution Time Examples
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Profiling Results for PA-RISC
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Profiling Results for PowerPC
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Profiling Results for Pentium
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Object Creation

e Previous experience with VSIPL has shown
— Object creation in inner loops is inefficient
— Solution is early binding / late destroys

e VSIPL++ reference implementation uses
VSIPL library as its compute engine
— Observed similar inner-loop inefficiencies
— C++ new() called to create subviews of data

e A purely C++ VSIPL++ implementation
would avoid some of these problems
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Overall Issues

e Additional data copying a potential problem

— Improvements in reference library will remove
some of this

e Memory allocation
— A clever implementation might avoid much of this

— Proposal to improve specification so
Implementation can avoid calls to C++ new() In
Inner loops

e Binary program size for embedded systems
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VSIPL++ Specification

e Issues with specification
— 1/0 for data Fixed in final spec

— Row/Column major Fixed in final spec

e matrix layout in memory
— Real and Imaginary subviews Fixed in final spec

— Sticky subview variables with remapping
Proposed fix for final spec

e There were still limitations in the VSIPL++ reference
Implementation we used

— Tensors
— Transpose views and operations
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Ongoing VSIPL++ Questions

e Knowing when data is copied and when it
Isn’'t and what we can do about it: there are
subtle C++ distinctions

e Continuing general concern about efficiency

e Use of bleeding-edge C++ features and
compiler compatibility



Our Contributions

e Demonstrated that VSIPL++ can be used for
real DoD application code

e Close look at details improved specification
— Fixing inconsistencies and small errors
— Improving understandability of the spec

e Redesign of the FFT and multiple-FFT API

e Bug fixes in reference implementation

e Improvements to underlying VSIPL reference
library
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Conclusions

e VSIPL++ serial specification has the
functionality to implement a typical DoD
signhal processing application

e Resulting code Is more understandable and
maintainable

e VSIPL++ can deliver comparable performance
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