
Evaluation of the VSIPL++ Serial
Specification Using the DADS Beamformer

HPEC 2004
September 30, 2004

Dennis Cottel (dennis.cottel@navy.mil)
Randy Judd (randall.judd@navy.mil)
SPAWAR Systems Center San Diego

VSIPL++ Demonstration

HPEC 2004 — DADS and VSIPL++ 2

• HPEC-SI is moving VSIPL functionality to object
oriented programming and C++: VSIPL++

• Goal of this demonstration:
– Evaluate the draft VSIPL++ Serial Specification
– Identify both advantages and problems with the VSIPL++

methodology
– Suggest improvements

• Method
– Port a DoD acoustic beamformer algorithm written in

standard C to use VSIPL++ and C++
– Measure and Evaluate (when compared to baseline code)

HPEC 2004 — DADS and VSIPL++ 3

Deployable Autonomous Distributed
System (DADS)

• DADS Goals
– Develop and demonstrate deployable autonomous

undersea technology to improve the Navy’s
capability to conduct effective Anti-Submarine
Warfare and Intelligence-Surveillance-
Reconnaissance operations in shallow water

• Sponsor: ONR 321
http://www.onr.navy.mil/sci_tech/ocean/321_sensing/info_deploy.htm

DADS Concept

HPEC 2004 — DADS and VSIPL++ 4

• Sensors, Arrays & Sources
– Acoustic
– Electromagnetic

• Communication Links
– RF buoys & AUV gliders
– Acoustic modems

• In-Node Signal Processing
– Acoustic, passive & active
– Electromagnetic
– Sensor data fusion

• Master Node
– Network control
– Network data fusion

• Sensors, Arrays & Sources
– Acoustic
– Electromagnetic

• Communication Links
– RF buoys & AUV gliders
– Acoustic modems

• In-Node Signal Processing
– Acoustic, passive & active
– Electromagnetic
– Sensor data fusion

• Master Node
– Network control
– Network data fusion

DADS Beamformer

HPEC 2004 — DADS and VSIPL++ 5

• Signal processing program chosen for
conversion is DADS multi-mode beamformer
– Adaptive minimum variance distortionless

response

• Current software is …
– Sequential ANSI C
– About 1400 lines of C source code
– Pointer-ized -- no vectorization

Approach

HPEC 2004 — DADS and VSIPL++ 6

• Establish test data and environment to execute and
validate current code

• Analyze existing code and data structures
• Vectorize
• Rewrite module using VSIPL++
• Validate VSIPL++ version
• Report specification issues and code metrics

Used pre-release of CodeSourcery sequential
VSIPL++ reference implementation which in
turn uses the VSIPL reference implementation

Deliverables

HPEC 2004 — DADS and VSIPL++ 7

• Metrics
– SLOC
– Lines changed if appropriate
– Time to develop
– Others

• Report results and lessons learned
– HPEC-SI workshop
– DADS Annual Program Review for ONR, project

personnel, industrial partner (Undersea Sensor
Systems Inc.)

Initial Steps

HPEC 2004 — DADS and VSIPL++ 8

• Established testable code baseline
– Wrapped module in executable program
– Set up test data file and associated parameters
– Set up validation procedures

• Analyzed baseline code
– Figured out what algorithms were implemented
– Mapped program data flow

Data Flow Map

HPEC 2004 — DADS and VSIPL++ 9

buffer ntimes

nsen

gr
n

xdata

nsen

n

FFT

gi
n

covariance matrix
covr/covi
(complex)

nsen

nsen

executed nsen
times

executed
nfreq
times

split into real and
imaginary parts

fgr/fgi
(complex)

nsen

nfreq

nave

sr/si
nh

replicas

fr/fi
(complex)

nh

nang

nfreq

solve

wr/wi
nh

freq_series

n

nang

nave

mvprod

adaptive
weights

IFFT

sum beam
nang

wt
nh

*conventional
weights

time_series

n

nang

nave

Dual Implementations

HPEC 2004 — DADS and VSIPL++ 10

• Starting from scratch based on analysis of
original program
– Insight, trial approaches to sub-problems

• Incremental modification of original program
– Vectorization

• Un-pointerize
• Reorder tests within loops
• Recast loops into vector and matrix operations

– VSIPL++ -ization
– This version chosen for final solution and

metrics

Example of Typical Code

HPEC 2004 — DADS and VSIPL++ 11

frptr = fr; // pointer to replica buffer (real)

fiptr = fi; // pointer to replica buffer (imag)

for (ifreq = ibin1; ifreq <= ibin2; ifreq++)

// produce one row of the weight matrix at a time

for (iang = 0; iang < nang; iang++) // loop over bearings

for (i = 0; i < nh; i++) // copy a row of the replica

sr[i] = *frptr;

si[i] = *fiptr;

frptr++;

fiptr++;

for (i = 0; i < nh; i++) // loop over hydrophones

wr[i] = wt[i] * sr[i];

wi[i] = wt[i] * si[i];

for (int ifreq = ibin1; ifreq <= ibin2; ifreq++)

w = vsip::vmmul<0>(wt, replica.get_xy(ifreq-ibin1));

Code Metrics

HPEC 2004 — DADS and VSIPL++ 12

• Number of files increased from 8 to 14
• SLOC for all source files

– Counting semicolons:
• Baseline 887
• VSIPL++ 630 -29%

– Counting non-blank, non-comment lines:
• Baseline 1389
• VSIPL++ 1018 -27%

• Heart of the beamformer calculation (all lines):
• Baseline 410
• VSIPL++ 180 -56%

• Lines of code changed: Most!

Memory Size Metrics

HPEC 2004 — DADS and VSIPL++ 13

• Binary program sizes (statically linked):
HP-UX/PA-RISC Red Hat/Pentium__

– Baseline 560 KB 700 KB
– VSIPL++ 1,800 KB 3,900 KB

• Memory footprint and usage:
– Weren’t able to measure this
– VSIPL++ programs might be expected to use

larger structures
• For example, N vectors become a matrix

– For this program’s statically allocated structures
and arrays, it should be a wash

Test Cases

HPEC 2004 — DADS and VSIPL++ 14

• 14 input sensors,
108 output beams

• 14x14 covariance matrix
• Forward FFTs 14 x 2048
• Inverse FFTs 108 x 2048
• Larger data set

• More smaller objects
created, object creation
amortized over less
computing

• 64 input sensors, 64
output beams

• 64x64 covariance matrix
• Forward FFTs 64 x 1024
• Inverse FFTs 64 x 1024
• Smaller data set

• Fewer larger objects
created, more
computing per object

Execution Time Examples

HPEC 2004 — DADS and VSIPL++ 15

0

100

200

300

400

500

600

PA-R
IS

C

Pow
erP

C

Pen
tiu

m

PA-R
IS

C

Pow
erP

C

Pen
tiu

m

64 sensors, 64 beams 14 sensors, 108 beams

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Baseline
VSIPL++

Profiling Results for PA-RISC

HPEC 2004 — DADS and VSIPL++ 16

64 sensors, 64 beams, 1024 point FFTs

0

10

20

30

40

50

60

70

80

90

100

Baseline VSIPL++

PA-RISC 8600, 550 MHz,
HP-UX 11.11, g++ 3.3.2

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

14 sensors, 108 beams, 2048 point FFTs

0

100

200

300

400

500

600

Baseline VSIPL++

PA-RISC 8600, 550 MHz,
HP-UX 11.11, g++ 3.3.2

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

Profiling Results for PowerPC

HPEC 2004 — DADS and VSIPL++ 17

64 sensors, 64 beams, 1024 point FFTs

0

10

20

30

40

50

60

70

80

90

Baseline VSIPL++

PowerPC, 1.25 GHz,
OS X 10.3.4, g++ 3.3

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

14 sensors, 108 beams, 2048 point FFTs

0

20

40

60

80

100

120

140

160

180

Baseline VSIPL++

PowerPC, 1.25 GHz,
OS X 10.3.4, g++ 3.3

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

Profiling Results for Pentium

HPEC 2004 — DADS and VSIPL++ 18

64 sensors, 64 beams, 1024 point FFTs

0

50

100

150

200

250

Baseline VSIPL++

Pentium, 450 MHz,
Red Hat 8.0, g++ 3.2

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

14 sensors, 108 beams, 2048 point FFTs

0

50

100

150

200

250

300

350

Baseline VSIPL++

Pentium, 450 MHz,
Red Hat 8.0, g++ 3.2

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

Object Creation

HPEC 2004 — DADS and VSIPL++ 19

• Previous experience with VSIPL has shown
– Object creation in inner loops is inefficient
– Solution is early binding / late destroys

• VSIPL++ reference implementation uses
VSIPL library as its compute engine
– Observed similar inner-loop inefficiencies
– C++ new() called to create subviews of data

• A purely C++ VSIPL++ implementation
would avoid some of these problems

Overall Issues

HPEC 2004 — DADS and VSIPL++ 20

• Additional data copying a potential problem
– Improvements in reference library will remove

some of this

• Memory allocation
– A clever implementation might avoid much of this
– Proposal to improve specification so

implementation can avoid calls to C++ new() in
inner loops

• Binary program size for embedded systems

VSIPL++ Specification

HPEC 2004 — DADS and VSIPL++ 21

• Issues with specification
– I/O for data Fixed in final spec
– Row/Column major Fixed in final spec

• matrix layout in memory
– Real and Imaginary subviews Fixed in final spec
– Sticky subview variables with remapping

Proposed fix for final spec

• There were still limitations in the VSIPL++ reference
implementation we used
– Tensors
– Transpose views and operations

Ongoing VSIPL++ Questions

HPEC 2004 — DADS and VSIPL++ 22

• Knowing when data is copied and when it
isn’t and what we can do about it: there are
subtle C++ distinctions

• Continuing general concern about efficiency
• Use of bleeding-edge C++ features and

compiler compatibility

Our Contributions

HPEC 2004 — DADS and VSIPL++ 23

• Demonstrated that VSIPL++ can be used for
real DoD application code

• Close look at details improved specification
– Fixing inconsistencies and small errors
– Improving understandability of the spec

• Redesign of the FFT and multiple-FFT API

• Bug fixes in reference implementation
• Improvements to underlying VSIPL reference

library

Conclusions

HPEC 2004 — DADS and VSIPL++ 24

• VSIPL++ serial specification has the
functionality to implement a typical DoD
signal processing application

• Resulting code is more understandable and
maintainable

• VSIPL++ can deliver comparable performance

Evaluation of the VSIPL++ Serial
Specification Using the DADS Beamformer

HPEC 2004
September 30, 2004

Dennis Cottel (dennis.cottel@navy.mil)
Randy Judd (randall.judd@navy.mil)
SPAWAR Systems Center San Diego

	Abstract:

