Evaluation of the VSIPL++ Serial
Specification Using the DADS Beamformer

HPEC 2004
September 30, 2004

Dennis Cottel (dennis.cottel@navy.mil)
Randy Judd (randall.judd@navy.mil)

SPAWAR Systems Center San Diego

VSIPL++ Demonstration

 HPEC-SI is moving VSIPL functionality to object
oriented programming and C++: VSIPL++

e Goal of this demonstration:
— Evaluate the draft VSIPL++ Serial Specification

— ldentify both advantages and problems with the VSIPL++
methodology

— Suggest improvements

e Method

— Port a DoD acoustic beamformer algorithm written in
standard C to use VSIPL++ and C++

— Measure and Evaluate (when compared to baseline code)

HPEC 2004 — DADS and VSIPL++

Deployable Autonomous Distributed
System (DADS)

« DADS Goals
— Develop and demonstrate deployable autonomous

undersea technology to improve the Navy’s
capability to conduct effective Anti-Submarine

Warfare and Intelligence-Surveillance-
Reconnaissance operations in shallow water

e Sponsor: ONR 321

http://www.onr.navy.mil/sci_tech/ocean/321 sensing/info_deploy.htm

HPEC 2004 — DADS and VSIPL++

Tactical Information
Network

* Sensors, Arrays & Sources
— Acoustic
— Electromagnetic

e Communication Links
— RF buoys & AUV gliders
— Acoustic modems

* In-Node Signal Processing
— Acoustic, passive & active
— Electromagnetic
— Sensor data fusion

» Master Node
— Network control
— Network data fusion

DADS Concept

SATCOM
Data Link

DADS Beamformer

e Signal processing program chosen for
conversion is DADS multi-mode beamformer

— Adaptive minimum variance distortionless
response

e Current software iIs ...
— Sequential ANSI C
— About 1400 lines of C source code
— Pointer-ized -- no vectorization

HPEC 2004 — DADS and VSIPL++

Approach

e Establish test data and environment to execute and
validate current code

e Analyze existing code and data structures

e Vectorize

 Rewrite module using VSIPL++

e Validate VSIPL++ version

e Report specification issues and code metrics

Used pre-release of CodeSourcery sequential
VSIPL++ reference implementation which in
turn uses the VSIPL reference implementation

HPEC 2004 — DADS and VSIPL++

Deliverables

e Metrics
— SLOC
— Lines changed if appropriate
— Time to develop
— Others

e Report results and lessons learned
— HPEC-SI workshop

— DADS Annual Program Review for ONR, project
personnel, industrial partner (Undersea Sensor
Systems Inc.)

HPEC 2004 — DADS and VSIPL++

Initial Steps

e Established testable code baseline
— Wrapped module in executable program
— Set up test data file and associated parameters
— Set up validation procedures

 Analyzed baseline code
— Figured out what algorithms were implemented
— Mapped program data flow

HPEC 2004 — DADS and VSIPL++

Data Flow Map

executed nsen

times ST
— w7
n
l Y=
ntimes buffer xdata @ nfreq forffgi
(complex)

I] split into real and
imaginary parts
nsen —‘ nsen
nsen n
“\ executed
nfrel nfreq
times
repliqas covariance matrix
nang fr/fi nsen covr/covi
(complex) (complex)
i
< nh nsen
A adaptive
nh \ nh /
conventional @
weights — h |
A
nave £/ nave
freq_series —> @ nan.g time_series
n n

HPEC 2004 — DADS and VSIPL++

Dual Implementations

e Starting from scratch based on analysis of
original program
— Insight, trial approaches to sub-problems

e Incremental modification of original program
— Vectorization
e Un-pointerize
e Reorder tests within loops
e Recast loops into vector and matrix operations
— VSIPL++ -ization

— This version chosen for final solution and
metrics

HPEC 2004 — DADS and VSIPL++

Example of Typical Code

frptr = fr; // pointer to replica buffer (real)
fiptr = fi; // pointer to replica buffer (imag)

for (ifreq = ibinl; i1freq <= i1bin2; i1freq++)

// produce one row of the weight matrix at a time
for (iang = O; iang < nang; i1ang++) // loop over bearings
for (i = 0; 1 < nh; 1++) // copy a row of the replica
sr[i] = *frptr;
si[i] = *fiptr;
frptr++;
fiptr++;

for (i = 0; 1 < nh; 1++) // loop over hydrophones
wr[i] = wt[i] * sr[i];
wi[i] = wt[i1] * si[i]:;

for (int ifreq = ibinl; ifreq <= ibin2; ifreq++)
w = vsip::vmmul<O>(wt, replica.get xy(ifreg-ibinl));

HPEC 2004 — DADS and VSIPL++

11

Code Metrics

e Number of files increased from 8 to 14

e SLOC for all source files
— Counting semicolons:
e Baseline 887
e VSIPL++ 630 -29%
— Counting non-blank, non-comment lines:
e Baseline 1389
e VSIPL++ 1018 -27%

e Heart of the beamformer calculation (all lines):
e Baseline 410
e VSIPL++ 180 -56%

e Lines of code changed: Most!

HPEC 2004 — DADS and VSIPL++ 12

Memory Size Metrics

e Binary program sizes (statically linked):
HP-UX/PA-RISC Red Hat/Pentium
— Baseline 560 KB 700 KB
— VSIPL++ 1,800 KB 3,900 KB

e Memory footprint and usage:
— Weren't able to measure this

— VSIPL++ programs might be expected to use
larger structures

e For example, N vectors become a matrix

— For this program’s statically allocated structures
and arrays, it should be a wash

HPEC 2004 — DADS and VSIPL++

13

Test Cases

64 Input sensors, 64
output beams

64x64 covariance matrix
Forward FFTs 64 x 1024
Inverse FFTs 64 x 1024
Smaller data set

Fewer larger objects
created, more
computing per object

HPEC 2004 — DADS and VSIPL++

14 input sensors,
108 output beams

14x14 covariance matrix
Forward FFTs 14 x 2048
Inverse FFTs 108 x 2048
Larger data set

More smaller objects
created, object creation
amortized over less
computing

14

Execution Time Examples

600

500

400

Execution time (seconds)
w
o
o

@ Baseline
mVSIPL++

200
100 1
O _. I . I I
QL\%Q @80 & &’ & &
. $ Q}\ ?‘Q $® <2Q,Q
Q?‘ Qo % Q <2o

64 sensors, 64 beams

14 sensors, 108 beams

HPEC 2004 — DADS and VSIPL++

15

Profiling Results for PA-RISC

seconds

64 sensors, 64 beams, 1024 point FFTs

100

90

80 -

70 A

60 +

50 ~

40 ~

30 ~

20 ~

10 ~

@ other

O malloc/free
B FFT

O main

O copy,get,put
O other VSIPL
B solve

O decompose

Baseline VSIPL++

PA-RISC 8600, 550 MHz,
HP-UX 11.11, g++ 3.3.2

seconds

14 sensors, 108 beams, 2048 point FFTs

600

500

400 -

300 -

200 -

100 -

@ other

O malloc/free
B FFT

O main

O copy,get,put
O other VSIPL
H solve

O decompose

Baseline VSIPL++

PA-RISC 8600, 550 MHz,
HP-UX 11.11, g++ 3.3.2

HPEC 2004 — DADS and VSIPL++

16

Profiling Results for PowerPC

seconds

64 sensors, 64 beams, 1024 point FFTs

90

80 1

70

60 -

50 A

40 +

30 A

20 A

10

@ other

O malloc/free
B FFT

O main

O copy,get,put
O other VSIPL
W solve

O decompose

Baseline VSIPL++

PowerPC, 1.25 GHz,
0S X 10.3.4,g++ 3.3

seconds

14 sensors, 108 beams, 2048 point FFTs

180
160
140
@ other
120 O malloc/free
BFFT
100 O main
80 O copy,get,put
O other VSIPL
60 - M solve
O decompose
40 -
20 -
O |

Baseline VSIPL++

PowerPC, 1.25 GHz,
0S X 10.3.4,g++ 3.3

HPEC 2004 — DADS and VSIPL++

17

Profiling Results for Pentium

seconds

64 sensors, 64 beams, 1024 point FFTs

250
_
200 +
@ other
@ malloc/free
150 - BFFT
@ main
O copy,get,put
100 - O other VSIPL
W solve
O decompose
50 -
0 M

Baseline VSIPL++

Pentium, 450 MHz,
Red Hat 8.0, g++ 3.2

seconds

14 sensors, 108 beams, 2048 point FFTs

350

300

250 +

200 +

150 ~

100 -

50 ~

E other

O malloc/free
B FFT

O main

O copy,get,put
O other VSIPL
M solve

O decompose

Baseline VSIPL++

Pentium, 450 MHz,
Red Hat 8.0, g++ 3.2

HPEC 2004 — DADS and VSIPL++

18

Object Creation

e Previous experience with VSIPL has shown
— Object creation in inner loops is inefficient
— Solution is early binding / late destroys

e VSIPL++ reference implementation uses
VSIPL library as its compute engine
— Observed similar inner-loop inefficiencies
— C++ new() called to create subviews of data

e A purely C++ VSIPL++ implementation
would avoid some of these problems

HPEC 2004 — DADS and VSIPL++

19

Overall Issues

e Additional data copying a potential problem

— Improvements in reference library will remove
some of this

e Memory allocation
— A clever implementation might avoid much of this

— Proposal to improve specification so
Implementation can avoid calls to C++ new() In
Inner loops

e Binary program size for embedded systems

HPEC 2004 — DADS and VSIPL++

20

VSIPL++ Specification

e Issues with specification
— 1/0 for data Fixed in final spec

— Row/Column major Fixed in final spec

e matrix layout in memory
— Real and Imaginary subviews Fixed in final spec

— Sticky subview variables with remapping
Proposed fix for final spec

e There were still limitations in the VSIPL++ reference
Implementation we used

— Tensors
— Transpose views and operations

HPEC 2004 — DADS and VSIPL++

21

Ongoing VSIPL++ Questions

e Knowing when data is copied and when it
Isn’'t and what we can do about it: there are
subtle C++ distinctions

e Continuing general concern about efficiency

e Use of bleeding-edge C++ features and
compiler compatibility

Our Contributions

e Demonstrated that VSIPL++ can be used for
real DoD application code

e Close look at details improved specification
— Fixing inconsistencies and small errors
— Improving understandability of the spec

e Redesign of the FFT and multiple-FFT API

e Bug fixes in reference implementation

e Improvements to underlying VSIPL reference
library

HPEC 2004 — DADS and VSIPL++

Conclusions

e VSIPL++ serial specification has the
functionality to implement a typical DoD
signhal processing application

e Resulting code Is more understandable and
maintainable

e VSIPL++ can deliver comparable performance

Evaluation of the VSIPL++ Serial
Specification Using the DADS Beamformer

HPEC 2004
September 30, 2004

Dennis Cottel (dennis.cottel@navy.mil)
Randy Judd (randall.judd@navy.mil)

SPAWAR Systems Center San Diego

	Abstract:

