Computer Systems, Inc.

Time Frequency Analysis for Single Channel Applications

John Saunders Mercury Computer Systems, Inc.

High Performance Embedded Computing (HPEC) Conference September 30, 2004

The Ultimate Performance Machine

Project Description

Implementation/Demonstration Goals

- Choose a selection of compute-intensive signal processing algorithms for demonstration on a real-time multicomputer system
- Some algorithms address problems in signal intercept or passive/active radar applications
- Follow progress of an interesting series of works performed at Naval Postgraduate School [2] (under Prof M. Fargues and former Prof R. Hippenstiel); also follow Time-Frequency toolbox [6].
 - Spectral Correlation Receiver based upon FFT Accumulation Method
 - Continuous Wavelet Transform (Scalogram)
 - Discrete Wigner-Ville Distribution with a selected set of interferencereducing kernels
 - Parallel Filter Bank and Higher Order Statistics detection
 - -- Third order cumulant detector/estimator

- TFRs are powerful tools to analyze, characterize, and classify dynamic signals existing in non-stationary conditions.
- Certain characteristics such as high resolution measurement of the instantaneous frequency and energy of a signal across time are appealing to practitioners across a wide range of science and engineering disciplines.
- Unfortunately the holy grail of high resolution and co-existence of multiple signals and multiple signal components remains elusive.
- An enormous amount of research focus has gone into obtaining the desirable mathematical properties of the Wigner-Ville Distribution without its accompanying distortion properties for the above conditions.
- Variety of algorithms, kernels, representations, etc. available.
- Many approaches involve high levels of computation, especially the fixes overlaid to overcome deficiencies of a particular technique.

The Ultimate Performance Machine

"Waterfall Displays"

Spectral Correlation

CWT Scalogram

Smoothed Pseudo Wigner-Ville Distribution

Filter Bank with Cumulant Noise Suppression

