# Computer Systems, Inc.

# **Time Frequency Analysis for Single Channel Applications**

### John Saunders Mercury Computer Systems, Inc.

High Performance Embedded Computing (HPEC) Conference September 30, 2004

The Ultimate Performance Machine



# **Project Description**

### **Implementation/Demonstration Goals**

- Choose a selection of compute-intensive signal processing algorithms for demonstration on a real-time multicomputer system
- Some algorithms address problems in signal intercept or passive/active radar applications
- Follow progress of an interesting series of works performed at Naval Postgraduate School [2] (under Prof M. Fargues and former Prof R. Hippenstiel); also follow Time-Frequency toolbox [6].
  - Spectral Correlation Receiver based upon FFT Accumulation Method
  - Continuous Wavelet Transform (Scalogram)
  - Discrete Wigner-Ville Distribution with a selected set of interferencereducing kernels
  - Parallel Filter Bank and Higher Order Statistics detection
    - -- Third order cumulant detector/estimator



## **Project Description**

### **Demonstration System**

- Common thread with all algorithms is a high-computational load distributed over multiple nodes to achieve real-time performance.
- Generally, a demonstration of these techniques runs on a single processor system and involves a fixed signal segment and a waiting period before presentation of results.
- Our contribution is to show these algorithms running in a "dynamic spectrum analyzer" mode with streaming input signal data.
- Near real-time graphic software written to display mesh and image plots. In addition, goal is to produce real-time contour plots.
- Show ease of implementation of using scientific algorithm library (SAL) library calls.



- TFRs are powerful tools to analyze, characterize, and classify dynamic signals existing in non-stationary conditions.
- Certain characteristics such as high resolution measurement of the instantaneous frequency and energy of a signal across time are appealing to practitioners across a wide range of science and engineering disciplines.
- Unfortunately the holy grail of high resolution and co-existence of multiple signals and multiple signal components remains elusive.
- An enormous amount of research focus has gone into obtaining the desirable mathematical properties of the Wigner-Ville Distribution without its accompanying distortion properties for the above conditions.
- Variety of algorithms, kernels, representations, etc. available.
- Many approaches involve high levels of computation, especially the fixes overlaid to overcome deficiencies of a particular technique.



## **Spectral Correlation**

### **FFT Accumulation Method [4,5]**



# Scalogram (CWT)

### **Continuous Wavelet Transform using fast convolution [6]**

- As freq = 0.05 to 0.5, "a" scales from 10 to 1
- Wavelet basis is Mexican Hat function
- As a scales, the filter size scales logarithmically from 2263 to 47 pts
- Convolve with signal using either 4K, 2K, 1K, or 512 pt FFT



Computer Systems. Inc.

The Ultimate Performance Machine



# **Wigner-Ville Distribution**

### Wigner-Ville Distribution [7]

- Computed at input sample rate which drives complexity requirement
- Best time-frequency resolution for estimating frequencies, chirp or drift rates, event times
- ICF function generates interference which limits usability
- Satisfies many mathematical properties including energy, time and frequency marginals, instantaneous frequency and group delay



# Computer Systems, Inc. Smoothed Pseudo Wigner-Ville Distributio

#### The Ultimate Performance Machine

### One of many interference reduction strategies applied to WVD

- Time window the input sequence to suppress cross term interference. Little effect upon computation.
- Window in the frequency domain (convolve in time domain) which adds a significant amount to the computational complexity.
- Net effect is loss of resolution in time and frequency for suppression of interference.
- Sample rate reduction possible due to bandwidth reduction by filtering.

{
$$\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{511}$$
}  $SPWVD[m, k] = \sum_{n} h[n](\sum_{l} g[l](s[m+n-l]s^{*}[m-n-l])e^{-j4\pi nk}$ 

Sequences of 512 pt real or complex sample vector

512 pt Waterfall Smoothed Pseudo WVD



<sup>© 2004</sup> Mercury Computer Systems, Inc.



Computer Systems, Inc.

#### **Time Frequency Detection Technique for Transients in Unknown Noise**

- Purpose is to demonstrate use of cumulant calculation in a real-time signal processing application.
- Follows work of [4]Satter,F. and Salomonsson,G. "On Detection Using Filter Banks and Higher Order Statistics," IEEE Trans. AES, Vol. 36, No. 4, Oct. 2000. Also see Taboada's report [5].
- Computational complexity, although relatively high, is reduced by using cumulant slices along diagonal.
- Based upon difference between (0,0) lag and diagonal along (-1,1) lag.
- Suboptimal for detection of transient low SNR signals in colored noise.
- Sattar, et al., derives expression of detector in terms of Teager-Kaiser energy operator and 3rd harmonic suppression.



512 pt waterfall filterbank with cumulant processing





# **Demonstration Algorithms**

# Unifying Fourier Transform relationships between demonstration algorithms





# **Time-Frequency Algorithms**

### Several (non-exclusive) categorizations of T-F algorithms

Order: Linear Quadratic Hyperbolic Power Invariance property: Time/frequency shift (Cohen's) -> kernel type Time/scale (affine)

Signal dependence: Signal independent Signal adaptive

### Representation / Atomic Decomposition: Orthogonal basis functions

Non-orthogonal elementary functions

### **Mathematical Interpretation:**

Physical: Complex exponentials as eigenfunction solutions Statistical: no structural assumptions; "dictionary of tiled wavelets"

### Algorithm:

**Spectrogram** Multi-windowed spectrogram **Gabor representation** Scalogram (CWT) **Discrete Wavelet Transform Wigner-Ville Distribution Pseudo Wigner-Ville** Distribution **Smoothed Pseudo Wigner-Ville Choi-Williams Cone-shaped** Rihaczek **Margeneau-Hill** Page **Born-Jordan Reassignment techniques** I/0 kernel **Radially Gaussian Kernel Adaptive Gabor Expansion Adaptive chirplet** Decomposition **Matching Pursuit Basis Pursuit** 



### **Qualifications on Performance Data**

- No attempt was made to lower sample rate on smoothed pseudo Wigner-Ville Distribution as made possible by filtering operations.
- No attempt has been made to optimize performance with respect to algorithmic breakdown beyond a top level.
- Example: WVD should be real, therefore could compute 2 FFT at once using odd and even input symmetries.
- No attempt has been made at optimizing performance with respect to machine and system architecture, i.e., stripmining.
- Example: Segment data blocks in consideration of processor L1 cache size to achieve fast throughput. Re-use of most recently used data segments.
- Display update rate limited by trying to get 512 KByte images through Ethernet pipe and router.



- WVD: 29 msec per 512 samples
- PWVD: 29 msec per 512 samples
- SPWVD: 650 msec per 512 samples
- Spectral Correlation: 33 msec for block of 4096 samples
- HOS filter bank: 732 msec for block of 512 samples
- Scalogram: 102 msec for block of 512 samples

#### **Exercise:**

As hypothetical example, using 64 kHz sample rate, 512 samples are collected in 8 milliseconds, 4096 samples are collected in 64 milliseconds.

| Algorithm                   | <b>Number</b> | processors |
|-----------------------------|---------------|------------|
| <b>Spectral correlation</b> | 1             |            |
| WVD                         | 5             |            |
| Scalogram                   | 12            |            |
| SPWVD                       |               |            |
| HOS filterbank              | large         | •          |



# Lab Development System



- 1X Force CPU50, 333MHz SPARC
- 6x Mercury, MCJ6 with 4x G4 7400@400MHz, with 64Mbyte RAM each
- Total of 76 Gflops peak processing
- Total of 152Gops peak 16Bit
- Dual RACE++
- Total bisection bandwidth of 1 Gbyte/sec



# **Demo System Configuration**





## **Selected References**

- 1. Taboada,F., "Detection and Classification of LPI Radar Signals Using Parallel Filter Arrays and Higher Order Statistics," Sept. 2002 Thesis.
- 2. Taboada, F., Lima, A., Gau, J.Jarpe, P. Pace, P., "Intercept Receiver Signal Processing Techniques to Detect LPI Radar Signals," ICASSP, 2002.
- 3. Satter, F. and Salomonsson, G. "On Detection Using Filter Banks and Higher Order Statistics," IEEE Trans. AES, Vol 36, No. 4, Oct. 2000.
- 4. Gardner, W., "Exploitation of Spectral Redundancy in Cyclostationary Signals," IEEE Signal Processing Magazine, Vol. 8, No. 2, pp.14-32, April 1991.
- 5. Roberts, R., Brown, R., Loomis, H., "Computationally Efficient Algorithms for Cyclic Spectral Analysis", IEEE Signal Processing Magazine, Vol. 8, No. 2, pp. 38-49, April 1991.
- 6. Time-Frequency Toolbox, Version 1.0, January 1996, Copyright (c) 1994-96 by CNRS (France) - RICE University (USA).
- 7. Qian, S., "Introduction to Time-Frequency and Wavelet Transforms," Prentice Hall PTR, Upper Saddle River, NJ, 2002.
- 8. Debnath, L, ed., "Wavelet Transforms and Time-Frequency Signal Analysis," Birkhauser Boston, New York, NY, 2001.

© 2004 Mercury Computer Systems, Inc.