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New FFT algorithm for embedded systems

Maximize in-cache operations through use of repeated 
transpose-reshape operations
Similar to partitioning for parallel implementation
Do as many operations in cache as possible
Re-materialize the array to achieve locality
Continue processing in cache and repeat process
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Example

Assume cache size c = 4; input vector length n = 32; 
number of rows r = n/c = 8

Generate vector of indices:

Use re-shape operator r to generate a matrix

v = i(n) = < 0 1 2...31 >
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Starting Matrix

Each row is of length 
equal to the cache size
Standard butterfly 
applied to each row as...
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Next transpose

To continue further would induce cache misses so 
transpose and reshape.
Transpose-reshape operation composed over indices 
(only result is materialized.
The transpose is:
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Resulting Transpose-Reshape

Materialize the transpose-
reshaped array B
Carry out butterfly 
operation on each row
Weights are re-ordered
Access patterns are 
standard...
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Transpose-Reshape again

As before: to proceed further would induce cache 
misses so:
Do the transpose-reshape again (composing indices)
The transpose is:
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Last step (in this example)
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Materialize the composed 
transpose-reshaped array C

Carry out the last step of the 
FFT

This last step corresponds to 
cycles of length 2 involving 
elements 0 and 16, 1 and 17, 
etc.
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Summary
All operations have been carried out in cache at the 
price of re-arranging the data
Data blocks can be of any size (powers of the radix): 
need not equal the cache size
Optimum performance: tradeoff between reduction of 
cache misses and cost of transpose-reshape operations
Number of transpose-reshape operations determined 
by the data block size (cache size)




