
College of Nanoscale Science and Engineering

Optimizing the Fast Fourier Transform over 
Memory Hierarchies for Embedded Digital 

Systems: A Fully In-Cache Algorithm

James E. Raynolds, College of Nanoscale Science and 
Engineering

Lenore Mullin, Computer Science
University at Albany, State University of New York, 

Albany, NY 12309



College of Nanoscale Science and Engineering

New FFT algorithm for embedded systems

Maximize in-cache operations through use of repeated 
transpose-reshape operations
Similar to partitioning for parallel implementation
Do as many operations in cache as possible
Re-materialize the array to achieve locality
Continue processing in cache and repeat process



College of Nanoscale Science and Engineering

Example

Assume cache size c = 4; input vector length n = 32; 
number of rows r = n/c = 8

Generate vector of indices:

Use re-shape operator r to generate a matrix

v = i(n) = < 0 1 2...31 >



College of Nanoscale Science and Engineering

Starting Matrix

Each row is of length 
equal to the cache size
Standard butterfly 
applied to each row as...

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=≡

31302928
27262524
23222120
19181716
15141312
111098
7654
3210

ˆvrcA ρ

0 1 2 3 4 5 6 7 8 9 10 11 etc.



College of Nanoscale Science and Engineering

Next transpose

To continue further would induce cache misses so 
transpose and reshape.
Transpose-reshape operation composed over indices 
(only result is materialized.
The transpose is:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

31272319151173
30262218141062
2925211713951
2824201612840

TA



College of Nanoscale Science and Engineering

Resulting Transpose-Reshape

Materialize the transpose-
reshaped array B
Carry out butterfly 
operation on each row
Weights are re-ordered
Access patterns are 
standard...

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=≡

31272319
151173
30262218
141062
29252117
13951
28242016
12840

)(ˆ TArcB ρ

0 4 8 12 16 20 24 28 1 5 9 13 etc.



College of Nanoscale Science and Engineering

Transpose-Reshape again

As before: to proceed further would induce cache 
misses so:
Do the transpose-reshape again (composing indices)
The transpose is:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3115301429132812
27112610259248
237226215204
193182171160

TB



College of Nanoscale Science and Engineering

Last step (in this example)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=≡

31153014
29132812
27112610
259248
237226
215204
193182
71160

)(ˆ TBrcC ρ

Materialize the composed 
transpose-reshaped array C

Carry out the last step of the 
FFT

This last step corresponds to 
cycles of length 2 involving 
elements 0 and 16, 1 and 17, 
etc.

1



College of Nanoscale Science and Engineering

Summary
All operations have been carried out in cache at the 
price of re-arranging the data
Data blocks can be of any size (powers of the radix): 
need not equal the cache size
Optimum performance: tradeoff between reduction of 
cache misses and cost of transpose-reshape operations
Number of transpose-reshape operations determined 
by the data block size (cache size)




