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Definition
[Moler and Van Loan,2003]

The solution to the differential equation

is given by

Where       is the matrix exponential function,

Notice that if                               in general.
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Application: Ballistic Target Tracking

• Tracking of a ballistic target using noisy measurements
• Tracking accomplished using the extended Kalman filter

– “extended” means that system dynamics are non-linear
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Jt  for a matrix J,

and Q(t) is the process noise covariance.

The Extended Kalman Filter

Measurement

Estimate next state based on previous state and new measurement
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Calculation Overview

1. Choose an integer j and scale A by m=2j

2. Use a Padé approximation to calculate

3. Perform j matrix multiplies to calculate
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E = e
A / 2
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Use the fact that e
A

= (e
A /m
)
m

This technique is referred to as “scaling and squaring” [4,5].

Preferred method, Padé approximation, is
only valid when ||A|| is small
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Padé Iteration Algorithm
X = A;
c = 1;
E = I;
D = I;
for(k = 1; k <= q; k++) // q=number of iterations
{
   c = c * (q-k+1) / (k*(2*q-k+1));
   X = A*X; // Matrix multiply
   E = E + cX; // Matrix scale and add
   if (k is even) // Matrix add or subtract
     D = D + cX;
   else
     D = D - cX;
}
E = D\E;  // Solve using LU factorization
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Implementation Overview

Op counts assume 6 Padé iterations

13-50%Matrix multiplyRepeated
squaring

3-6%LU and
backsolve

50-75%Matrix multiply,
scale, add

Padé iteration

<2%Elementwise
multiply

Scale the
matrix A

Percentage
of op count

OperationsStep Implementation Features
• Single-precision real or

complex float
• C++
• Uses an object for

storage
• Calls VSIPL routines
• Uses Altivec-optimized

matrix multiply
• Choose accuracy to

match limits of single-
precision calculations

void create(Matrix<T> &A,
Matrix<T> &E);

void run( Matrix<T> &A,
Matrix<T> &E);

// Allocates memory & initializes
// LU factorization
// Performs computation
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Performance

• Platform: Mercury 500 MHz PowerPC G4
• Achieves respectable performance for large matrices
• For tracking, sizes of interest are small — 6x6 matrices

– A tuned implementation could be produced for this size

Achieved Performance on PowerPC G4
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Performance Breakdown

• Performance breakdown
on PowerPC G4

• Steps based on matrix
multiply are more
efficient than other steps

• For large matrices, matrix
multiply steps still
consume most of the
execution time

• LU/backsolve is a
substantial percentage of
time despite being a low
percentage of the op
count
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The Matrix Exponential in Tracking

• Matrix exponential is a
substantial part of the EKF’s
operation count

• How many targets could a
single processor track?
– Assume 500 MHz PPC G4
– Use execution time of 6x6 real

matrix exponential
– Assume remainder of EKF

has efficiency comparable to
LU factorization (~0.04%)

– Vary track rate from 2-10 Hz
• A single processor can

potentially track many targets
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Conclusions

• Matrix exponential function is important for
tracking applications

• A large percentage of the operations are matrix
multiply functions

• An efficient implementation of this function allows
it to be used in an extended Kalman filter

• Many targets can be tracked using even a single
processor
– Using multiple processors obviously allows more

targets to be tracked
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