

Implementing the Matrix Exponential Function on Embedded Processors

James Lebak

Andrea Wadell Massachusetts Institute of Technology Lincoln Laboratory

Eighth Annual High-Performance Embedded Computing Workshop (HPEC 2004) 30 Sep 2004

This work is sponsored by the United States Navy under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

MatrixExponential-1 JML 9/20/04

Definition [Moler and Van Loan,2003]

The solution to the differential equation

$$\dot{x} = Ax(t)$$
$$x(0) = x_0$$

is given by

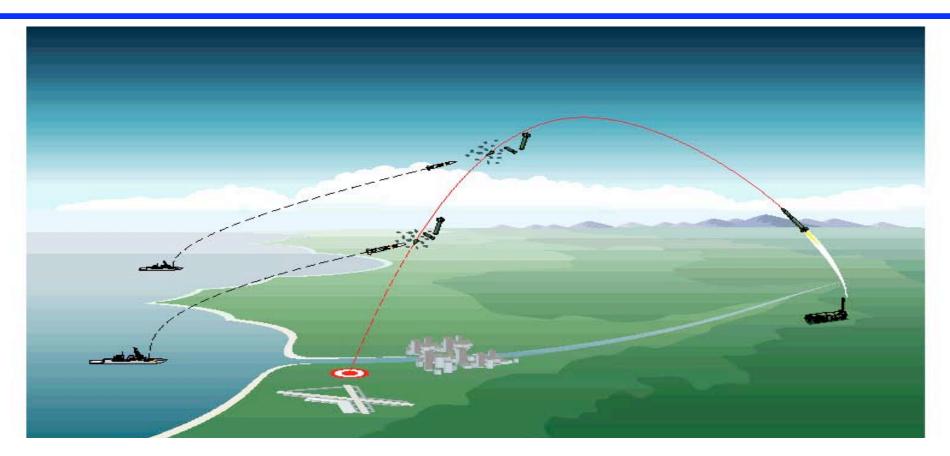
$$x(t) = e^{At} x_0$$

Where e^{At} is the matrix exponential function, $e^{At} = I + At + \frac{A^2 t^2}{2!} + ...$

Notice that if $A = [a_{ij}], e^{At} \neq [e^{a_{ij}t}]$ in general.

MIT Lincoln Laboratory

Application: Ballistic Target Tracking

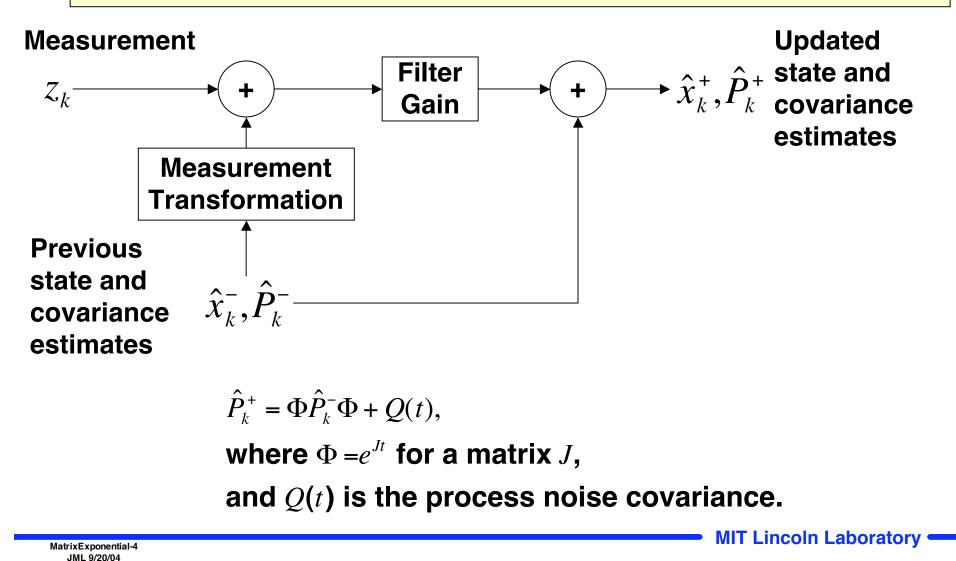


- Tracking of a ballistic target using noisy measurements
- Tracking accomplished using the *extended Kalman filter*
 - "extended" means that system dynamics are non-linear

MIT Lincoln Laboratory

The Extended Kalman Filter

Estimate next state based on previous state and new measurement



Preferred method, Padé approximation, is only valid when ||A|| is small Use the fact that $e^{A} = (e^{A/m})^{m}$

1. Choose an integer *j* and scale *A* by $m=2^j$

2. Use a Padé approximation to calculate $E = e^{A/2^{j}}$

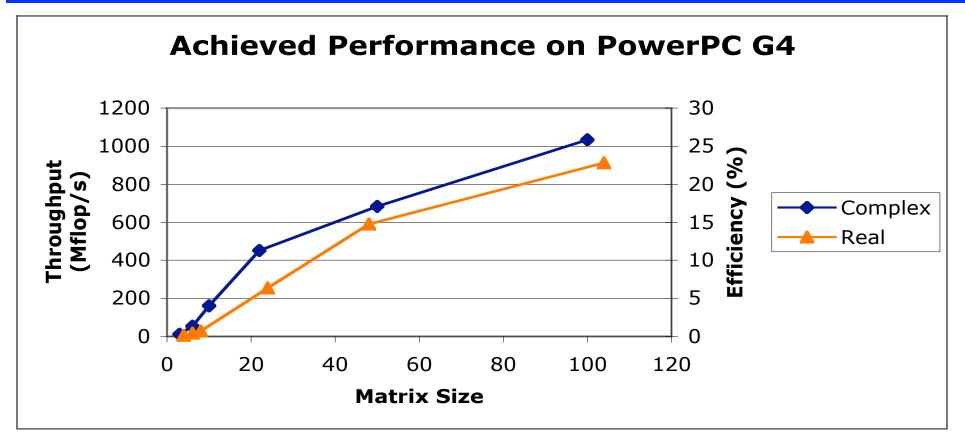
3. Perform *j* matrix multiplies to calculate $E^{2^{j}}$

This technique is referred to as "scaling and squaring" [4,5].


```
X = A;
c = 1;
E = I;
D = I;
for (k = 1; k \le q; k++) // q= number of iterations
{
  c = c * (q-k+1) / (k*(2*q-k+1));
           // Matrix multiply
  X = A * X;
  E = E + cX; // Matrix scale and add
   if (k is even) // Matrix add or subtract
   D = D + cX;
  else
    D = D - cX;
E = D \setminus E;
                       // Solve using LU factorization
```


Implementation Overview

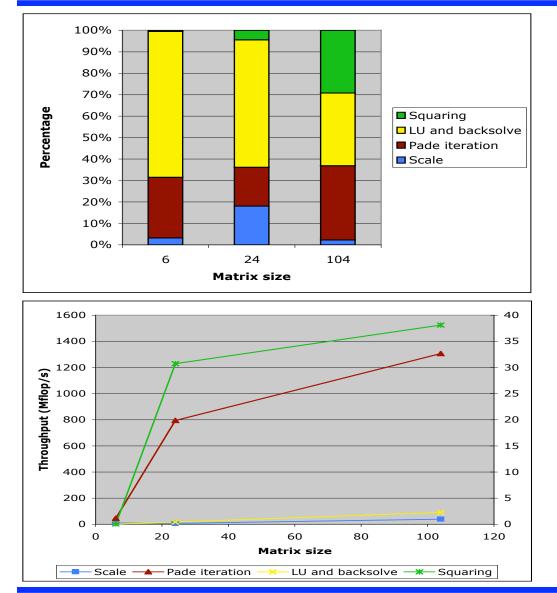
Step	Operations	Percenta of op co	U	Implementation Features Single-precision real or 	
Scale the matrix A	Elementwise multiply	<2%		 complex float C++ Uses an object for storage Calls VSIPL routines 	
Padé iteration	Matrix multiply, scale, add	50-75%			
LU and backsolve		3-6%		 Uses Altivec-optimized matrix multiply Choose accuracy to match limits of single- precision calculations 	
Repeated squaring	Matrix multiply	13-50%			
Op counts assume 6 Padé iterations					
<pre>void create(Matrix<t> &A,</t></pre>			// L(llocates memory & initializes U factorization erforms computation	



- Platform: Mercury 500 MHz PowerPC G4
- Achieves respectable performance for large matrices
- For tracking, sizes of interest are small 6x6 matrices
 - A tuned implementation could be produced for this size

MIT Lincoln Laboratory

Performance Breakdown

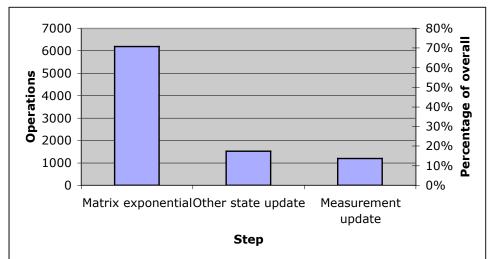


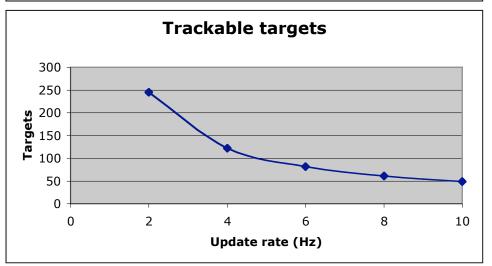
- Performance breakdown on PowerPC G4
- Steps based on matrix multiply are more efficient than other steps
- For large matrices, matrix multiply steps still consume most of the execution time
- LU/backsolve is a substantial percentage of time despite being a low percentage of the op count

MIT Lincoln Laboratory

MatrixExponential-9 JML 9/20/04

The Matrix Exponential in Tracking





- Matrix exponential is a substantial part of the EKF's operation count
- How many targets could a single processor track?
 - Assume 500 MHz PPC G4
 - Use execution time of 6x6 real matrix exponential
 - Assume remainder of EKF has efficiency comparable to LU factorization (~0.04%)
 - Vary track rate from 2-10 Hz
- A single processor can potentially track many targets

- Matrix exponential function is important for tracking applications
- A large percentage of the operations are matrix multiply functions
- An efficient implementation of this function allows it to be used in an extended Kalman filter
- Many targets can be tracked using even a single processor
 - Using multiple processors obviously allows more targets to be tracked

- [1] Michael Athans, Robert H. Whiting, and Michael Gruber. A suboptimal estimation algorithm with probabilistic editing for false measurements with applications to target tracking with wake phenomena. *IEEE Transactions on Automatic Control*, 22(3):372–384, June 1977.
- [2] Y. Bar-Shalom, X. Li, and T. Kirubarajan. *Estimation with Applications to Tracking and Navigation*. John Wiley and Sons, 2001.
- [3] A. Farina, B. Ristic, and D. Benvenuti. Tracking a ballistic target: comparison of several nonlinear filters. *IEEE Transactions on Aerospace and Electronic Systems*, 38(3):854–867, July 2002.
- [4] Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. Johns Hopkins University Press, 3rd edition, 1996.
- [5] Cleve Moler and Charles Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. *SIAM Review*, 45(1):3–49,March 2003.
- [6] B. Ristic, A. Farina, D. Benvenuti and M. S. Arulampalam. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry. *IEE Proceedings on Radar and Sonar Navigation*, 150(2):65–70, April 2003.

