
Formerly MPI Software Technology, Inc.

Funded Under SBIR
Topic OSD03-022 (OSD/AF)
“High Performance Object Oriented Software for
Parallel Embedded Systems”

Pulse Compression
Made Easy with

VSIPL++

a radar

VSIPL and VSIPL++
Reference Implementations

User Application

VSIPL++ (C++)API

VSIPL C API

VSIPL Reference
Implementation

User Application

VSIPL C API

VSIPL Reference
Implementation

Math Kernels

The VSIPL Reference Implementation The VSIPL++ Reference Implementation
Builds upon the VSIPL Reference Implementation

VSI/Pro Product and the
VSI/Pro++ Prototype

User Application

VSIPL++ (C++)API

VSIPL C API

VSI/Pro Internal C++ Engine

VSI/Pro C / ASM Kernels

User Application

VSI/Pro (VSIPL C API)

VSI/Pro Internal C++ Engine

VSI/Pro C / ASM Kernels

The VSI/Pro++ Prototype
Builds upon the VSI/Pro Product

Structure of VSI/Pro

Layered Approach
versus a Pure Implementation

VSIPL++ User
Applications

VSI/Pro++ (VSIPL++ API)

VSI/Pro C++
Engine

VSI/Pro C/ASM Kernel

Object Oriented
Strategies

- Deferred Evaluation

Synthetic Aperature
Radar

Pulse CompressionCritical
Benchmarks

Synthetic Aperature
Radar

Pulse Compression

VSIPL++ (C++)API

VSIPL C API

VSI/Pro Internal C++ Engine

VSI/Pro C / ASM Kernels

• What are the benefits of a Pure VSI/Pro++ Product.
• Having both API bindings available is a hidden benefit to

programs that want to migrate their systems from VSIPL to
VSIPL++ in phases.

Performance Comparison for
1024 Point Complex FFT

Data Size CCFFT by value CCFFT by reference
VSIPL (VSI/Pro) 1024 does not apply 11.52 us
VSIPL++ (VSI/Pro) 1024 18.74 us 12.24 us

multiple CCFFT by value multiple CCFFT by reference
VSIPL (VSI/Pro) 1024 sets of 1024 does not apply 80 ms
VSIPL++ (VSI/Pro) 1024 sets of 1024 127.540 ms 82.350 ms

• Did not experience any significant overhead from layering the VSIPL++
API on top of the VSI/Pro API (See rightmost column).

Case Study: Pulse Compression
Pulse Compression works by distributing the energy in the outgoing Radar pulse over
a larger span of time with one of a select number of waveform pulses that are
generally known as chirp waveforms. This kind of filtering not only improves the
accuracy of the measurements, but also rejects most kinds of ambient noise. The net
effect is an improvement in resolution and decreased demand for peak power
requirement in the signal generation equipment. A typical pulse consists of a short
burst of frequency like the one shown here.

The digital signal processing
functions that are associated with
pulse compression applications
typically use a complex FFT, a
complex reference multiply,
followed by an inverse complex
FFT. Pulse compression, and FFT
processing in general comprise a
major portion of the processing
load in state of the art radar
systems.

Pulse Compression: The VSIPL way

The pseudocode:
Create Vectors
Create Forward FFT object
Create Inverse FFT object

Create 3 temporary vector to hold intermediate frequency domain results.

Convert reference signal vector to the frequency domain:
Forward FFT(Ref Signal Vec, Temp Vec1)

Convert Input signal to the frequency domain:
Forward FFT(Input Signal Vec, Temp Vec2)

Multiply vectors in the frequency domain:
Vector Multiply(Temp Vec1, Temp Vec2, Temp Vec3)

Obtain the inverse FFT:
Inverse FFT(Temp Vec3, Answer Vec)

Pulse Compression: The VSIPL++ way
The pseudocode:
Create Vectors
Create Forward FFT object
Create Inverse FFT object

Answer Vec = INV_FFT(FFT(Input Vec)*FFT(Reference Signal Vec));

Noisy ReturnReference Signal

Integrating Expression
Manipulation into VSIPL++

Expression object strategies address the important problem of
temporary copy proliferation that occurs as a result of operator
overloading in C++.

Existing technologies that were studied -
• PETE (Portable Expression Template Engine)

Developed at the Advanced Computing Laboratory at
the Los Alamos National Laboratory

• BLITZ++
The goal of Blitz++ is to provide a similar level of performance
on par with Fortran 77/90

• FACT! (Functional Additions to C++ through Templates and Classes)
A library that provides expression manipulation plus other functional
programming language features not normally accessible in C++.

Observations from using VSIPL++

Benefits:
• Concise code
• Readable
• Natural looking expressions

Hazards:
• Complex looking data types, may be

helped in practice by typedefs
• General C++ concerns (e.g., possible to

abuse the language)

