Qotvicis Introduction and Motivation

 Power consumption/density has become a critical issue
in high performance processor design

« This issue is even more important on battery-powered
embedded cores and systems

« The embedded processing market is growing at a very
fast pace

« Application engineers must be able to accurately
predict the energy usage for the core and the system
when running their applications

« This project is targeted to improve the power analysis
capabilities of the ADI Blackfin family of processors and
systems

Bma/(/’zg NUGAR

ADI Blackfin Family of Processors

Human Interface Wireless Connectivity
- Speech Recognition - Bluetooth

- Text to Speech - GSM/GPRS

- Handwriting ' - 3G/EDGE

. Audio Digital

Signal

Processing

Wired Digital Imaging

Connectivity CODECs

- USB I i - MPEG

. TCP/IP : lﬂw{/& . JPEG

- Ethernet - H.263

Image - H.264
Microprocessing Processing

Operating 1 Designed for High
Systems/RTOS System Control/ Level Language

Applications Software

ANALOG

DEVICES Blackfin Family

Blﬂﬂl(/m

« Blackfin Core
— High-performance
— 16-bit
— Dual-MAC embedded processors
— Equally adept at DSP, control processing, and image processing

 Processor Features
— 400-756Mhz core capable of to 1.512 GMACs
— 8, 16 and 32-bit fixed-point math support
— Hierarchical reconfigurable memory systems
— Dual core versions

— High speed peripherals and DMA controller
» Parallel Peripheral Interface (PPI) : dedicated 0-75Mhz parallel data port
« SPORTS, SPI, External Port, SDRAM, UART (IrDA), etc
— Control processing features
* Very high compiled code density
» Supervisor and user modes/MMU, watchdog timer, real-time clock

How does the Blackfin Processor help?)
BLAcK 22

*Speeds time-to-market and facilitates rapid product derivatives
—High-performance software target
—Software-centric product development

Lowers BOM and R&D costs
—Eliminates redundant DSP, MCU and hardware accelerator blocks

—Software reuse model enhances R&D productivity with each sequential
product generation

—Processors begin at $5 (in quantities of 10K)

*Reduces technical, market and schedule risks
—Software support for multiple formats and evolving standards
—Development and debug within software—not ASIC—cycle times

—Signal processing capabilities along with a familiar RISC programming
model

*Enables end-product feature differentiation
—2X to 4X performance advantage per dollar and per milliwatt

Blackfin Dynamic Power Management Overview

Wide range of core frequencies supported (1.25M->756 MHz)
—Programmable Core and System Clocks for maximum power savings

Wide range of core operating voltages supported (0.8 -> 1.4 V)
—Programmable internal voltage levels based on core frequency

Full complement of power savings modes
—Full-on, Active, Sleep, Deep-sleep and Hibernate

“Voltage and frequency tuning” for minimum power
—Ensures consistent, low power consumption across process

Dual-core processor can be used for power savings
—Lower voltage levels and lower frequencies provide additional power

savings options with equivalent performance levels
Buack g

),

Power Dissipation
Dynamic power dissipation B[ﬂg[(/m

— Due to switching activity
Static power dissipation
— Due to leakage current — major paths are:

» Subthreshold leakage
« Exponentially dependent on Vdd, Vth, temperature

« Gate leakage —
« Exponentially dependent on Vdd, Tox _"-l

Power vs. Energy

 Important to distinguish between power and energy

« P=1*Vcc e« E=P*T
P — average power . E —energy consumed
| — average current . T —execution time
Ve — supply voltage - T=N"1/

- N — number of cycles

e Therefore . f—clock frequency

— ExI*N

Instruction-level Power Estimation
Strategy

Develop an instruction-level energy model for the Blackfin
processor (BF533 @ 1.2 V and 270 MHz, though our approach is re-

targetable)
— Core voltage operation between 0.8V and 1.4V from 0 to 756 MHz

Leverage past work on instruction-level power profiling for
embedded cores (Tiwari @ Princeton)
— Instruction-level estimation can be effective on cores with simple pipelines

We then build energy estimates, working with individual basic
blocks, and then weight blocks based on the dynamic call graph
traversal during program execution

Blﬂﬂl(/k@ NUGAR

Instruction-level Power Estimation
Strategy

 We consider variability due a configurable memory
hierarchy

« We consider the impact of operand values and operand
types on energy

« We consider environmental effects on measurements

« We will combine our instruction-level model with
VisualDSP++ to provide power/performance framework

Blﬂﬂl(/k@ NUGAR

Instruction-Level Energy Modeling

Total Energy = Base Energy Cost + Inter-Instruction Effects

 Base Energy Cost

— The energy cost to execute an individual instruction

« Capture Base Energy Costs
— Construct loops containing several instances of the same instruction
(now automated)
— Measure the average current drawn while executing this loop

— The base energy cost is directly proportional to this current, multiplied
by the number of cycles needed to complete each instance of the
instruction

Blﬂﬂl(/k@ NUGAR

Instruction-Level Energy Modeling

Total Energy = Base Energy Cost + Inter-Instruction Effects

* Inter-Instruction Effects

— Energy contributions that are not considered in the base energy cost
— Circuit state overhead

« Added cost due to switching activity within the circuit when executing
two different instructions in succession

» Effect measured using a pair of different instructions in a loop and
capturing the average current

— Effects of resource constraints and delays

« Common events - pipeline stalls, cache misses, write buffer stalls

» These events increase the number of cycles required to complete an
instruction

» The average power per cycle often decreases, but the overall energy still
increases due to the higher cycle count

Blﬂﬂl(/k@ NUGAR

gaues Measurement Environment swear
Warm-up

84

83

82
AAM

81

) W
79

78 f

77

76 /
75 (f

74 rrrrrrrrrrrrrr1rrr 111U rorr1r 111717111 1r1r 171717 17 17 17 17 11 1 17 17T 17T 17T 17T T 1T T 1T 1T T TTTTTTTT1
0 2 4 6 8§ 10 12 14 16 18 20 22 24 26 28 30

Current (mA)

Minutes

ANALOG

= Impact of Operand Values

Instruction: r7 =r3 + r4;
r3 Value r4 Value Current (mA)
Ox1 Ox1 93.8
0x3333 0x3333 94.7
OxFFFF OxFFFF 95.6
0x33333333 0x33333333 95.6
0xFFFFFFFF 0xFFFFFFFF 97.5
Instruction Initial Values Current (mA)
r6 = -13; 3 = 0x90B 94.1
13 =-13; 3 =0x90B 108.5

NUGCAR

« Comments:

— Input operand values have a significant impact on average current (range of 3.9
mA)

— Power is dependent upon the number of bit flips performed in a cycle

— Large variations in current are observed with changing destination register
values

— Presents challenges to our measurement assumptions

DEVICES Instruction Selection NUGAR
Add Nop Combination
top_loop: top_loop: top_loop:
r/f =r3 +r4; nop; r/f =r3 +r4;
r7=r3+r4; nop; nop;
r7=r3+r4; nop; r7=r3+r4;
nop;
jump top_loop; jump top_loop;

jump top_loop;
« Average current
— Add: 94.7 mA
— NOP: 90.9 mA
— Combination: 108.7 mA

« Comments:

— Circuit state overhead is significant (i.e., NOPs are not free)
— Decode overhead is a major contributor to power consumption

ANALOG

oves Memory Configuration

* Investigated current dissipation of L1 memory
configured as SRAM vs. cache

« Cache overhead for Load instruction

— Instruction: 3.9 mA
— Data: 11.8 mA

« Comments:
— Cache maintenance operations increase current dissipation

— Data cache consumes more current due to core layout and
multi-port design

NUCAR

ANALOG

DEVICES NUGAR
Example Program: Cache Disabled
r7*=r1;
ré =r1+r6 (ns); Average current: 116.4 mA E=4.4nJ
[51]= r17+|- re; Number of Cycles: 9 Percent Difference
i1] =r7;
[i2] = r6: E=47nJ 5%
[i3] = r5;

Example Program: Parallel Instructions

r1 = [i0]; Measured Estimated
r7==ri; Average current: 127.5 mA E=38nJ

r6 =r1+r6(ns)||[i1] =r7; _

5 =r1 +|- 16 || [i2] = r6: Number of Cycles: 7 Percent Difference

[13] = r5; E=4.0nJ 5%

amuos Example Program: Multiple
Basic Blocks

r1.h = 0x5555;
1.1 = OXAAAA. Measured
r2.h = 0x3333; Average current: 114.2 mA
Jrjnlm Ic:t()(;ﬁ?c’ Number of Cycles: 20
label1: E=10.2nJ
r/’.h=r1.h*r2.h, r7.1 =r1.1I*r2.l;
e =r1&r2;
r5 = ashift r1 by r2.1 (s); Estimated
jump label2;
label2: E=9.9nJ
[11++] = r7; Percent Difference
[i(1++] = r6;
[i(1++] = r5; 2%

NUCAR

ANALOG

DEVICES Sum mary

Developed a retargetable method to produce an
instruction-level energy model

Constructed an instruction-level energy model for the
Blackfin processor and used it to estimate programs
with less than 6% error

Developed a set of automated tools to drive test code
generation and current measurements

Studied the energy effects of the memory hierarchy,
changes in operand values, and environmental factors

Blﬂl}l(/km NUGAR

