
Introduction and Motivation

• Power consumption/density has become a critical issue
in high performance processor design

• This issue is even more important on battery-powered
embedded cores and systems

• The embedded processing market is growing at a very
fast pace

• Application engineers must be able to accurately
predict the energy usage for the core and the system
when running their applications

• This project is targeted to improve the power analysis
capabilities of the ADI Blackfin family of processors and
systems

ADI Blackfin Family of Processors
Wireless Connectivity
• Bluetooth
• GSM/GPRS
• 3G/EDGE

Digital Imaging
CODECs
• MPEG
• JPEG
• H.263
• H.264

Wired
Connectivity
• USB
• TCP/IP
• Ethernet

Human Interface
• Speech Recognition
• Text to Speech
• Handwriting
• Audio

Operating
Systems/RTOS

Designed for High
Level Language

Image
ProcessingMicroprocessing

Digital
Signal

Processing

System Control/
Applications Software

Blackfin Family

• Blackfin Core
– High-performance
– 16-bit
– Dual-MAC embedded processors
– Equally adept at DSP, control processing, and image processing

• Processor Features
– 400-756Mhz core capable of to 1.512 GMACs
– 8, 16 and 32-bit fixed-point math support
– Hierarchical reconfigurable memory systems
– Dual core versions
– High speed peripherals and DMA controller

• Parallel Peripheral Interface (PPI) : dedicated 0-75Mhz parallel data port
• SPORTS, SPI, External Port, SDRAM, UART (IrDA), etc

– Control processing features
• Very high compiled code density
• Supervisor and user modes/MMU, watchdog timer, real-time clock

How does the Blackfin Processor help?

•Speeds time-to-market and facilitates rapid product derivatives
–High-performance software target
–Software-centric product development

•Lowers BOM and R&D costs
–Eliminates redundant DSP, MCU and hardware accelerator blocks
–Software reuse model enhances R&D productivity with each sequential
product generation

–Processors begin at $5 (in quantities of 10K)
•Reduces technical, market and schedule risks

–Software support for multiple formats and evolving standards
–Development and debug within software—not ASIC—cycle times
–Signal processing capabilities along with a familiar RISC programming
model

•Enables end-product feature differentiation
–2X to 4X performance advantage per dollar and per milliwatt

Blackfin Dynamic Power Management Overview
• Wide range of core frequencies supported (1.25M->756 MHz)

–Programmable Core and System Clocks for maximum power savings

• Wide range of core operating voltages supported (0.8 -> 1.4 V)
–Programmable internal voltage levels based on core frequency

• Full complement of power savings modes
–Full-on, Active, Sleep, Deep-sleep and Hibernate

• “Voltage and frequency tuning” for minimum power
–Ensures consistent, low power consumption across process

• Dual-core processor can be used for power savings
–Lower voltage levels and lower frequencies provide additional power

savings options with equivalent performance levels

Power Dissipation

• Therefore
– E ∝ I * N

• E = P * T
• E – energy consumed
• T – execution time

• T = N * 1/f
• N – number of cycles
• f – clock frequency

• Important to distinguish between power and energy
• P = I * Vcc

• P – average power
• I – average current
• Vcc – supply voltage

Power vs. Energy

• Dynamic power dissipation
– Due to switching activity

• Static power dissipation
– Due to leakage current – major paths are:

• Subthreshold leakage
• Exponentially dependent on Vdd, Vth, temperature

• Gate leakage
• Exponentially dependent on Vdd, Tox

Instruction-level Power Estimation
Strategy

• Develop an instruction-level energy model for the Blackfin
processor (BF533 @ 1.2 V and 270 MHz, though our approach is re-
targetable)
– Core voltage operation between 0.8V and 1.4V from 0 to 756 MHz

• Leverage past work on instruction-level power profiling for
embedded cores (Tiwari @ Princeton)
– Instruction-level estimation can be effective on cores with simple pipelines

• We then build energy estimates, working with individual basic
blocks, and then weight blocks based on the dynamic call graph
traversal during program execution

Instruction-level Power Estimation
Strategy

• We consider variability due a configurable memory
hierarchy

• We consider the impact of operand values and operand
types on energy

• We consider environmental effects on measurements

• We will combine our instruction-level model with
VisualDSP++ to provide power/performance framework

Instruction-Level Energy Modeling

Total Energy = Base Energy Cost + Inter-Instruction Effects

• Base Energy Cost
– The energy cost to execute an individual instruction

• Capture Base Energy Costs
– Construct loops containing several instances of the same instruction

(now automated)
– Measure the average current drawn while executing this loop
– The base energy cost is directly proportional to this current, multiplied

by the number of cycles needed to complete each instance of the
instruction

Instruction-Level Energy Modeling
Total Energy = Base Energy Cost + Inter-Instruction Effects

• Inter-Instruction Effects
– Energy contributions that are not considered in the base energy cost
– Circuit state overhead

• Added cost due to switching activity within the circuit when executing
two different instructions in succession

• Effect measured using a pair of different instructions in a loop and
capturing the average current

– Effects of resource constraints and delays
• Common events - pipeline stalls, cache misses, write buffer stalls
• These events increase the number of cycles required to complete an

instruction
• The average power per cycle often decreases, but the overall energy still

increases due to the higher cycle count

74

75

76

77

78

79

80

81

82

83

84

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Minutes

C
ur

re
nt

 (m
A

)

Measurement Environment
Warm-up

Impact of Operand Values

• Comments:
– Input operand values have a significant impact on average current (range of 3.9

mA)
– Power is dependent upon the number of bit flips performed in a cycle
– Large variations in current are observed with changing destination register

values
– Presents challenges to our measurement assumptions

Instruction: r7 = r3 + r4;
r3 Value

0x1

0x3333 0x3333 94.7

0xFFFF

0x33333333

0xFFFFFFFF

r4 Value Current (mA)
0x1 93.8

0xFFFF 95.6

0x33333333 95.6

0xFFFFFFFF 97.5

r3 = 0x90B

r3 = 0x90B

Initial Values

108.5r3 = -r3;

94.1r6 = -r3;

Current (mA)Instruction

Instruction Selection
Add

top_loop:

r7 = r3 + r4;

r7 = r3 + r4;

r7 = r3 + r4;

…

jump top_loop;

Nop
top_loop:

nop;

nop;

nop;

…

jump top_loop;

Combination
top_loop:

r7 = r3 + r4;

nop;

r7 = r3 + r4;

nop;

…

jump top_loop;

• Average current
– Add: 94.7 mA
– NOP: 90.9 mA
– Combination: 108.7 mA

• Comments:
– Circuit state overhead is significant (i.e., NOPs are not free)
– Decode overhead is a major contributor to power consumption

Memory Configuration

• Investigated current dissipation of L1 memory
configured as SRAM vs. cache

• Cache overhead for Load instruction
– Instruction: 3.9 mA
– Data: 11.8 mA

• Comments:
– Cache maintenance operations increase current dissipation
– Data cache consumes more current due to core layout and

multi-port design

Example Program: Cache Disabled
Measured

Average current: 116.4 mA

Number of Cycles: 9

E = 4.7 nJ

Estimated

E = 4.4 nJ

Percent Difference

5%

r1 = [i0];
r7 *= r1;
r6 = r1 + r6 (ns);
r5 = r1 +|- r6;
[i1] = r7;
[i2] = r6;
[i3] = r5;

r1 = [i0];
r7 *= r1;
r6 = r1 + r6 (ns) || [i1] = r7;
r5 = r1 +|- r6 || [i2] = r6;
[i3] = r5;

Measured

Average current: 127.5 mA

Number of Cycles: 7

E = 4.0 nJ

Estimated

E = 3.8 nJ

Percent Difference

5%

Example Program: Parallel Instructions

Example Program: Multiple
Basic Blocks

Measured

Average current: 114.2 mA

Number of Cycles: 20

E = 10.2 nJ

Estimated

E = 9.9 nJ

Percent Difference

2%

r1.h = 0x5555;
r1.l = 0xAAAA;
r2.h = 0x3333;
r2.l = 0xCCCC;
jump label1;

label1:
r7.h = r1.h*r2.h, r7.l = r1.l*r2.l;
r6 = r1 & r2;
r5 = ashift r1 by r2.l (s);
jump label2;

label2:
[i1++] = r7;
[i1++] = r6;
[i1++] = r5;

Summary

• Developed a retargetable method to produce an
instruction-level energy model

• Constructed an instruction-level energy model for the
Blackfin processor and used it to estimate programs
with less than 6% error

• Developed a set of automated tools to drive test code
generation and current measurements

• Studied the energy effects of the memory hierarchy,
changes in operand values, and environmental factors

