

LOCKHEED MARTIN

Authors

Stewart Reddaway / World Scape Inc.

Brad Atwater / Lockheed Martin MS2

Paul Bruno / WorldScape Inc.

Dairsie Latimer / ClearSpeed Technology, plc.

Rick Pancoast / Lockheed Martin MS2

Pete Rogina / World Scape Inc.

Leon Trevito / Lockheed Martin MS2

September 29, 2004

ClearSpeed[™]

Architecture

 ClearSpeed's Multi Threaded Array Processor Architecture – MTAP

Applications

Power Comparison Results (Table presented at HPEC 2003)

Processor	Clock	Power	FFT/sec /Watt	PC/sec/ Watt
Mercury PowerPC 7410	400 MHz	8.3 Watts	3052	782.2
World <i>Scapel</i> <i>ClearSpeed</i> 64 PE Chip	200 MHz	2.0 Watts**	56870	24980
Speedup			18.6 X	31.9 X

** 2.0 Watts was the worst case result from Mentor Mach PA Tools.

Actual Measured Hardware Results < 1.85 Watts HPEC 2003 Cycle Accurate Simulations were validated on actual hardware. Results matched to within 1%.

ClearSpeed

WerldScape Defense

Benchmark

•Pulse Compression Input (MatLab)

- 1 KHz PRF (1ms PRI)
- 20 MHz sampling rate
- 870 samples
- Echo
 - 10 us pulse
 - LFM chirp up
 - 200 samples

• Pulse Compression Reference (MatLab)

- Frequency Domain Reference
- 🔸 🛛 10 us
- LFM chirp up
- 1024 samples
- + Hamming weighting
- Bit-reversed to match optimized implementatio

• Pulse Compression Output (MatLab)

+671 samples out of PC

- Fie	jure No	. 3: PC 0							>
Eile	Edit V	ew Inse	ert Lools	Window E	telp				
	🛎 E		► A	715	● @ ●				
	5000		-						
	4500	-						11	-
	4000	-							-
	3500	-							-
-8	3000	-0							-
an th	2500	-24							-
2	2000								-
	1600								-
	1000	-							-
	600								-
	0							la	
	-	0	100	200	300 Rang	400 e Bin	500	600	700

ClearSpeed

W^{*}ridScape

Benchmark

Benchmark Measurements:

Validate Pulse Compression performance with hardware and with data flowing from and to external DRAM (1 MTAP processor)

ClearSpeed

W~rbGcape Defense

Benchmark

Benchmark Measurements:

Validate Pulse Compression performance with hardware and with data flowing from and to external DRAM

(Average Performance across 2 MTAP processors)

1) Input Data and reference Function loaded from Host onto DRAM

2) Data input to MTAP #1 and (via MTAP #1) to MTAP #2, processed, and output (via MTAP #1) into DRAM

3) Results returned to Host for display

ClearSpeed

W~ridScape Defense

Summary

Hardware validation of HPEC 2003 results to within 1%

World-class radar processing benchmark results

Optimized Pulse Compression functions modified using COTS SDK and integrated onto Host platform

Wide Ranging Applicability to DoD/Commercial Processing Requirements

• VSIPL Core Lite Libraries under development Application Areas

Image Processing Signal Processing Compression/De-compression

- Encryption/De-cryption
- Network Processing
- Search Engine
 - Supercomputing Applications

ClearSpeed

W~ridScape Defense