

LOCKHEED MARTIN

Authors

Stewart Reddaway / World <i>Scape</i> Inc.	Rick Pancoast / Lockheed Martin MS2	
Brad Atwater / Lockheed Martin	Pete Rogina / WorldScape Inc.	
MS2	Leon Trevito / Lockheed Martin	
Paul Bruno / WorldScape Inc.	MS2	

September 29, 2004

ClearSpeed^{**}

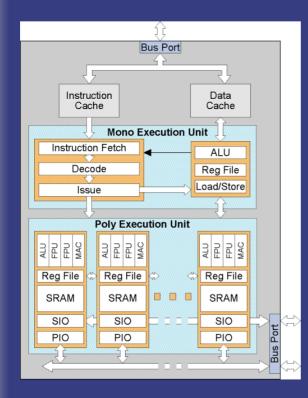
Technology, plc.

Overview

+ Work Objective

- Provide working hardware benchmark for Multi-Threaded Array Processing Technology
 - Enable embedded processing decisions to be accelerated for upcoming platforms (radar and others)
 - Validate Pulse Compression benchmark with hardware, and with data flowing from and to external DRAM
 - Support customers' strategic technology investment decisions

• Share results with industry


New standard for performance AND performance per watt

ClearSpeed

Nⁿrid**G**aape

Architecture

ClearSpeed's Multi Threaded Array Processor Architecture – MTAP

Architectural DSP Features:

- •Multiple operations per cycle
 - -Data-parallel array processing
 - -Internal PE parallelism
 - -Concurrent I/O and compute
 - -Simultaneous mono and poly operations
- Specialized execution units in each PE
 - -Integer MAC, Floating-Point Units
- •On-chip memories
 - -Instruction and data caches
 - -High bandwidth PE "poly" memories
 - -Large scratchpad "mono" memory
- •Zero overhead looping
 - -Concurrent mono and poly operations

- Fully programmable at high level with Cn (parallel variant of C)
- Hardware multi-threading
- Extensible instruction set
- Fast processor initialization and restart
- High performance, low power
 10 GFLOPS/Watt

- Scalable internal parallelism
 - Array of Processor Elements (PEs)
 - Compute and bandwidth scale together
 - From 10s to 1,000s of PEs
 - Multiple specialized execution units per PE
- Multiple high speed I/O channels

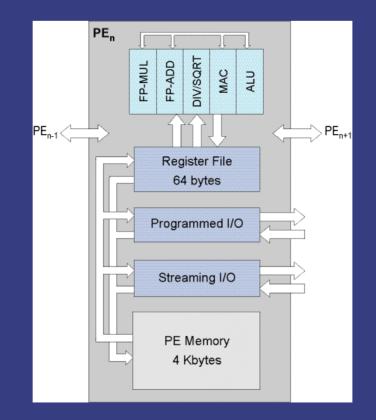
ClearSpeed

8 0

c.

Lo.

La s


0

å

Prideoape

Architecture

Processor Element Structure

- ALU + accelerators: integer MAC, Dual FPU, DIV/SQRT
- High-bandwidth, multi-port register file
- Closely-coupled SRAM for data
- High-bandwidth per PE DMA: PIO, SIO

- High-bandwidth inter-PE communication
- Supports multiple data types:
 - 8, 16, 24, 32-bit, ...
 fixed point
 - 32-bit IEEE floating point

ClearSpeed

W nd cape

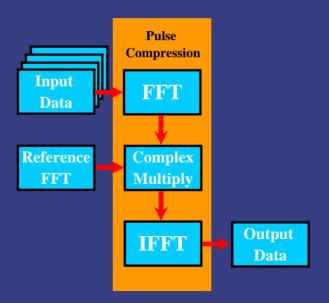
æ

Applications

Power Comparison Results (Table presented at HPEC 2003)

Processor	Clock	Power	FFT/sec /Watt	PC/sec/ Watt
Mercury PowerPC 7410	400 MHz	8.3 Watts	3052	782.2
World <i>Scapel ClearSpeed</i> 64 PE Chip	200 MHz	2.0 Watts**	56870	24980
Speedup			18.6 X	31.9 X

** 2.0 Watts was the worst case result from Mentor Mach PA Tools.


Actual Measured Hardware Results < 1.85 Watts

HPEC 2003 Cycle Accurate Simulations were validated on actual hardware. Results matched to within 1%.

ClearSpeed

W nd cape

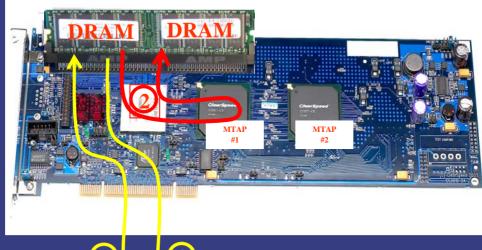
WorldScape and Lockheed Martin collaborated to provide demonstration using realistic Pulse Compression data on actual hardware

 1K FFT and IFFT implemented on 8 PEs with
 128 complex points per PE (8 FFTs performed in parallel over 64 PEs)

-Pulse Compression based upon optimized instructions: FFT, complex multiply by a realistic reference FFT, IFFT

-32-bit IEEE standard floating point

ClearSpeed

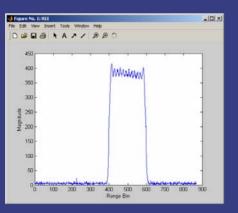

Manid Gape

Benchmark Measurements:

Validate Pulse Compression performance with hardware and with data flowing from and to external DRAM (1 MTAP processor)

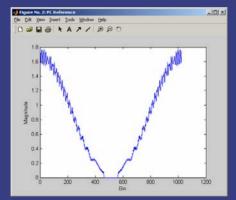
	Per Second (/s)	Per Second Per Watt (/s/W)
FFTs (within PC)	68800*	37200
Pulse Compression	34680	18744
GFLOP	3.73	2.02

* Adjusted for CM = 73000 FFT/s, 39400 FFT/s/W



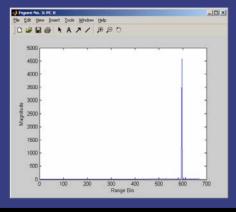
- 1) Input Data and reference Function loaded from Host onto DRAM
- 2) Data input from DRAM to MTAP #1, processed, and output into DRAM
- 3) Results returned to Host for display

ClearSpeed


WindGoape

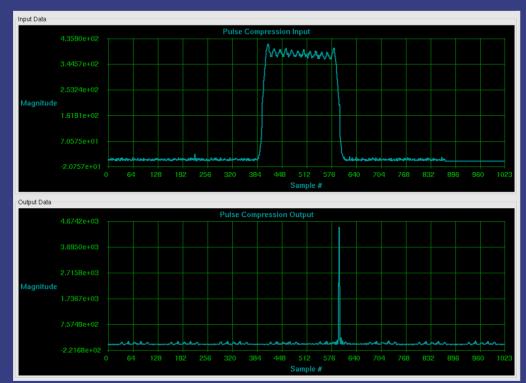
•Pulse Compression Input (MatLab)

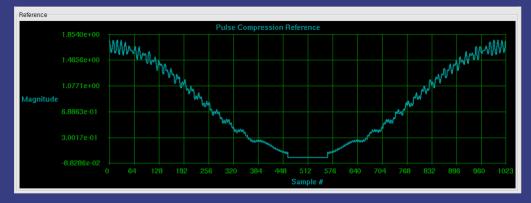
- 1 KHz PRF (1ms PRI)
- 20 MHz sampling rate
- 870 samples
- + Echo
 - 10 us pulse
 - LFM chirp up
 - 200 samples


•Pulse Compression Reference (MatLab)

- Frequency Domain Reference
- 10 us
- LFM chirp up
- 1024 samples
- Hamming weighting
- Bit-reversed to match optimized implementation

•Pulse Compression Output (MatLab)

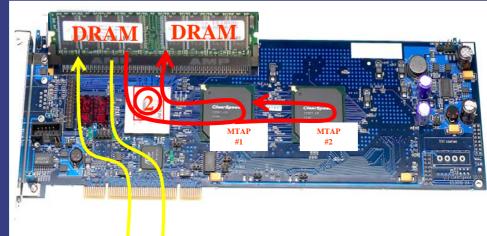

+671 samples out of PC


ClearSpeed

N ridecape

•Pulse Compression Input/Output (Actual)

•Pulse Compression Reference (Actual)*


Benchmark Measurements:

Validate Pulse Compression performance with hardware and with data flowing from and to external DRAM

(Average Performance across 2 MTAP processors)

	Per Second (/s)	Per Second Per Watt (/s/W)
FFTs (within PC)	56800*	30700
Pulse Compression	28610	15465
GFLOP	3.08	1.67

* Adjusted for CM = 60200 FFT/s, 32510 FFT/s/W

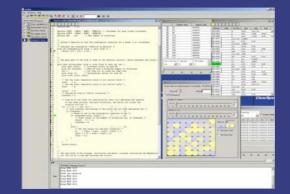
Host

1) Input Data and reference Function loaded from Host onto DRAM

2) Data input to MTAP #1 and (via MTAP #1) to MTAP #2 processed, and output (via MTAP #1) into DRAM

3) Results returned to Host for display

ClearSpeed


WindGoape

Hardware validation of HPEC 2003 results to within 1%

World-class radar processing benchmark results

Optimized Pulse Compression functions modified using COTS SDK and integrated onto Host platform

Wide Ranging Applicability to DoD/Commercial Processing Requirements

VSIPL Core Lite Libraries under development

Application Areas

- Image Processing
- Signal Processing
- Compression/De-compression
- Encryption/De-cryption
- Network Processing
- Search Engine
- Supercomputing Applications

ClearSpeed

N rid Scape