
Dynamo: A Runtime Codesign Environment
Heather Quinn1, Dr. Miriam Leeser Dr. Laurie Smith King

Northeastern University College of the Holy Cross
1hquinn@ece.neu.edu

Motivation: Accelerate image
processing tasks through efficient use
of FPGAs. Combine already
designed components at runtime to
implement series of transformations
(pipelines)

Image Processing Pipelines
Series of image processing algorithms applied to an image
Each algorithm has a software and hardware implementation
Finding the optimal pipeline assignment is complicated

Exponential number of implementations
Coupling costs differ for each pipeline assignment

Need a strategy to find a fast pipeline implementation at runtime

Reconfigurable Systems
Using reconfigurable hardware incurs execution costs not present in
software or ASIC-based systems

Hardware initialization
Communication
Reprogramming

Efficient Use of FPGAs
Software algorithm’s runtime for small images less than the hardware
costs

Profiling the hardware and software runtimes for different image
sizes determines the crossover point
Deciding at runtime to execute in software or hardware is simple
for one algorithm processing one image

Future Work

Publications
Dynamo: A Runtime Partitioning System, L. A. Smith King, Miriam
Leeser, and Heather Quinn, The 2004 International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA'04), pp.
145-151, Las Vegas, Nevada, June 21-24, 2004.

Runtime Assignment of Reconfigurable Hardware Components for
Image Processing Pipelines, Heather Quinn, L.A. Smith King, Miriam
Leeser, and Waleed Meleis, 2003 IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 173-182,
Napa, CA, April 8-11, 2003.

Run this pipeline:

On this Environment:

FPGA

Which component
implementations to use?
How to minimize overall
latency?
When to use FPGA?
How to change the
pipeline or interfaces
dynamically?

Median Filter
&

Edge
Detection

Fast, Flexible Image Processing

Four Shortcomings in
Codesign

Applications are configured statically
Design is not sensitive to user changes

FPGA-based tools do not account for overhead costs
Latency is underestimated

Partition bound too early
Interface between HW and SW is hard coded

Interface changes too costly
System code needs extensive rewrites

Combining two design processes
Unify implementation languages

Partitioning design
The pipeline assignment problem

Interfacing hardware and software
Abstract communication layer and runtime interface

synthesis
Choosing a target architecture

One FPGA and one GPP

Four Challenges to Codesign

Goal: If pipeline selection is left
to the image analyst, can the
other three steps be performed
automatically at runtime?

SW/HW Runtime Procedural
Partitioning Tool

Solves PA within either fixed or adaptive time limit based on user's
choice
Chooses an algorithm to solve PA based on pipeline size

Optimization Method Fixed Adaptive
Dynamic Programming 1-7 1-15
1-Opt Tabu Search with Greedy 8,9 --
1-Opt Tabu Search with All Hardware 10-20 16-20

Our Codesign Environment

ipBLOC
Profiles

Component
Specs

Interface
Type Specs

ipBLOC
Impls

Pipeline Compilation

RIPS

SHARPP

Pipeline Assignment

Image
Size

Pipeline
Selection

Pipeline
Assignment

Pipeline Execution

PEP

Result

Image

Java
Executable
Pipeline

Pipeline
Interface

Specification

ipBLOC

Device
Size

Pipeline Selection:
choosing and ordering
components
Pipeline Assignment:
assigning pipelines to
minimize overall
latency with the
efficient use of
software and FPGA
Pipeline Compilation:
creating image
processing pipelines
dynamically
Pipeline Execution:
executing image
processing pipelines

Runtime Interfacing for Pipeline
Synthesis

Builds executable pipeline from PA solution
Connects the appropriate implementations so that the coupling costs
are satisfied

Median Filter → Edge Detector → Edge Map Pipeline

Median
Filter

Edge
Detecto

r

Edge
Map

Image

Height

Width

Image

Height

Width

Image

Height

Width

Thresh

Image

Thresh Thresh

Runtime
Environment Pipeline

PEP

Runtime
Environment’s
Communication
Agent

Pipeline’s
Communicatio
n
Agent

Packet Exchange
Platform

Separates pipeline from runtime environment
Makes communication abstract and generic

A Two Component
Pipeline

Median Filter→ Histogram
Image size of 40185 pixels

PA

Predicted
Latency w/
overhead (ms)

Predicted
Latency w/o
overhead (ms)

Actual
Latency
(ms)

ARE* w/
overhead

ARE*
w/o
overhead

sw/sw 2509 2509 2141 0.1719 0.1719
sw/hw 4905 2516 3967 0.2365 0.3658
hw1/sw 2864 376 2975 0.0373 0.8736
hw2/sw 2852 392 3141 0.0920 0.8752
hw3/sw 3036 577 3004 0.0107 0.8079
hw1/hw 2896 399 3042 0.0480 0.8688
hw2/hw 2884 584 2803 0.0289 0.7917

Forty test pipelines of different lengths were run in the Dynamo
system for the best latency solution
Image size of 40185 pixels
Average ARE: 23% with overhead, 70% without

Test

Predicted
Latency w/
overhead (ms)

Predicted
Latency w/o
overhead (ms)

Actual
Latency
(ms)

ARE* w/
overhead

ARE*
w/o
overhead

1 1111 1111 1309 0.1513 0.1513
5 2902 375 3169 0.0843 0.8817

10 3362 743 3571 0.0585 0.7919
15 4509 1411 4789 0.0585 0.7054
20 4849 1701 5955 0.1857 0.7144
25 4928 1785 6012 0.1803 0.7031
30 5297 2114 8560 0.3812 0.7530
35 6006 2575 10922 0.4501 0.7642
40 7289 3450 12217 0.4034 0.7176

Random Pipeline Test

Extend the pipeline assignment problem for FPGA devices:
in a network of workstations
with embedded processors

Extend the pipeline assignment problem's objectives to include
power minimization
Extend the latency model to include an estimation of the error for
better accuracy

*Absolute Relative Error (ARE) = |(measured latency - predicted latency) / measured latency|

