Dynamo: A Runtime Codesign Environment

Heather Quinn¹, Dr. Miriam Leesen Northeastern University

Our Codesign Environment

Pipeline

Pipeline Assignm

SHARPP

Pipeline Compilation

ipBI OC

ipBL Imp]

Sne

Dr. Laurie Smith King

HOLY TOROSE

Motivation: Accelerate image processing tasks through efficient use of FPGAs. Combine already designed components at runtime to implement series of transformations (pipelines)

Northeastern

Run this pipeline:

On this Environment:

Pipeline Selection:

Pipeline Assignment: assigning pipelines to

minimize overall latency with the

efficient use of

software and FPGA

components

choosing and ordering

SW/HW Runtime Procedural Partitioning Tool

Solves PA within either fixed or adaptive time limit based on user's choice

Chooses an algorithm to solve PA based on pipeline size			
Optimization Method	Fixed	Adaptive	
Dynamic Programming	1-7	1-15	
1-Opt Tabu Search with Greedy	8,9		
1-Opt Tabu Search with All Hardware	10-20	16-20	

Runtime Interfacing for Pipeline Svnthesis Image Height• Height Heiaht Edae Modia Edge Width • Width Width Filter Thresh Thres Thres

Builds executable pipeline from PA solution

Connects the appropriate implementations so that the coupling costs are satisfied

- Separates pipeline from runtime environment
- Makes communication abstract and generic

	Predicted	Predicted	Actual		ARE*
	Latency w/	Latency w/o	Latency	ARE* w/	w/o
PA	overhead (ms)	overhead (ms)	(ms)	overhead	overhead
sw/sw	2509	2509	2141	0.1719	0.1719
sw/hw	4905	2516	3967	0.2365	0.3658
hw ₁ /sw	2864	376	2975	0.0373	0.8736
hw ₂ /sw	2852	392	3141	0.0920	0.8752
hw ₃ /sw	3036	577	3004	0.0107	0.8079
hw ₁ /hw	2896	399	3042	0.0480	0.8688
hw ₂ /hw	2884	584	2803	0.0289	0.7917

Random Pipeline Test

Forty test pipelines of different lengths were run in the Dynamo system for the best latency solution

Image size of 40185 pixels

Average ARE: 23% with overhead, 70% without

	Predicted	Predicted	Actual		ARE*
	Latency w/	Latency w/o	Latency	ARE* w/	w/o
Test	overhead (ms)	overhead (ms)	(ms)	overhead	overhead
1	1111	1111	1309	0.1513	0.1513
5	2902	375	3169	0.0843	0.8817
10	3362	743	3571	0.0585	0.7919
15	4509	1411	4789	0.0585	0.7054
20	4849	1701	5955	0.1857	0.7144
25	4928	1785	6012	0.1803	0.7031
30	5297	2114	8560	0.3812	0.7530
35	6006	2575	10922	0.4501	0.7642
40	7289	3450	12217	0.4034	0.7176

Future Work

- Extend the pipeline assignment problem for FPGA devices:
 - in a network of workstations
- with embedded processors
- Extend the pipeline assignment problem's objectives to include power minimization
- Extend the latency model to include an estimation of the error for better accuracy

Publications

Dynamo: A Runtime Partitioning System, L. A. Smith King, Miriam Leeser, and Heather Quinn, The 2004 International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA'04), pp. 145-151, Las Vegas, Nevada, June 21-24, 2004.

Runtime Assignment of Reconfigurable Hardware Components for Image Processing Pipelines, Heather Quinn, LA. Smith King, Miriam Leeser, and Waleed Meleis, 2003 IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 173-182, Napa, CA, April 8-11, 2003.

Reconf	igura	ble S	ystems

- Using reconfigurable hardware incurs execution costs not present in software or ASIC-based systems
 - Hardware initialization
 - Communication Reprogramming

de-

Reprogramming

Efficient Use of FPGAs

Software algorithm's runtime for small images less than the hardware costs

- Profiling the hardware and software runtimes for different image sizes determines the crossover point
- Deciding at runtime to execute in software or hardware is simple for one algorithm processing one image

Image Processing Pipelines

Series of image processing algorithms applied to an image

Each algorithm has a software and hardware implementation Finding the optimal pipeline assignment is complicated

- Exponential number of implementations
- Coupling costs differ for each pipeline assignment
- Need a strategy to find a fast pipeline implementation at runtime

*Absolute Relative Error (ARE) = |(measured latency - predicted latency) / measured latency|Napa, CA, April 8-11, 2003.

Interfacing hardware and software
 Abstract communication layer and runtime interface synthesis

 Choosing a target architecture
 One FPGA and one GPP

The pipeline assignment problem