ClearSpeed

Dairsie Latimer Simon McIntosh-Smith Ron Bell Stephen Hudson dairsie@clearspeed.com simon@clearspeed.com ron.bell@awe.co.uk stephen.hudson@awe.co.uk

A Better Approach: ClearSpeed's CS301 Processor

- Multi-threaded Array Processing
 - Programmed in high-level languages
 - Hardware multi-threading
 - Enables simultaneous data streaming and computation for latency tolerance
 - Run-time extensible instruction set
- Array of Processors Elements
 - PEs are VLIW cores
 - Flexible data parallel processing
 - Built-in PE fault tolerance, resiliency
- High performance, low power
 - 10 GFLOPS/Watt
- Multiple high bandwidth I/O channels

- 50 GFLOPS peak @ 10W maximum
- 200K FFTs/s (1K complex single precision IEEE754)
- Up to 1GB DRAM for local processing
- Single slot width full-size PCI card
- In evaluation use since early 2004

- Owned by UK Daresbury Laboratory
- Widely used within AWE, also academia & industry
- 91% of CPU time in 5 small routines
- One calls the other 4 to compute forces on all atoms
- Forces called once per time step
- Small amount of data returned by forces from CS to host
- Calculation for each atom is independent

Matrix Multiply Benchmark (SGEMM)

- CS301 single precision code started at ~20% efficiency
- AWE/CS code restructuring gave 12 GFLOPS 47%
- Performance verified by AWE on CS301 hardware
- "Avebury" significantly increases this performance

ClearSpeed

