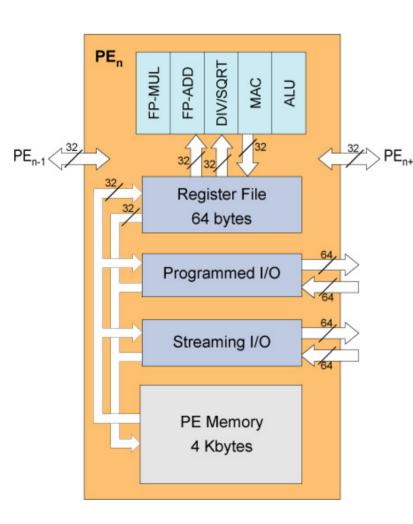
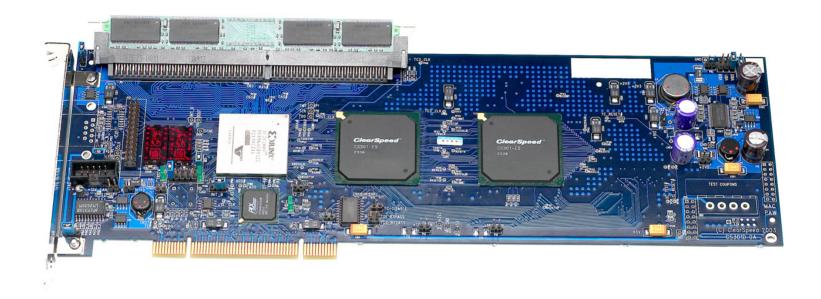

ClearSpeed



Simon McIntosh-Smith Dairsie Latimer Ron Bell Stephen Hudson simon@clearspeed.com dairsie@clearspeed.com ron.bell@awe.co.uk stephen.hudson@awe.co.uk

CS301 Processor



- Multi-threaded Array Processing
 - Programmed in high-level languages
 - Hardware multi-threading
 - Enables simultaneous data streaming and computation for latency tolerance
 - Run-time extensible instruction set
- Array of Processors Elements
 - PEs are VLIW cores
 - Flexible data parallel processing
 - Built-in PE fault tolerance, resiliency
- High performance, low power
 - 10 GFLOPS/Watt
- Multiple high bandwidth I/O channels

Each PE is a VLIW processor:

- Multiple execution units
 - Floating point adder) 32
 - 32-bit IEEE 754
 - Floating point multiplier
 - Divide/square root unit
 - Fixed point MAC 8x8->16+48
 - Integer ALU with shifter
 - Load/store
- High-bandwidth, 5-port register file (3r, 2w)
- Closely coupled 4KB SRAM for data
- High bandwidth per PE load/store (PIO)
- Per PE address generator
 - Complete pointer model, including parallel pointer chasing and vectors of addresses

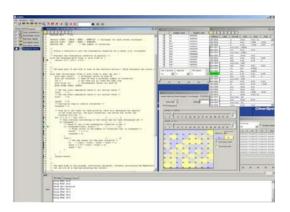
- 2 chip board 50 GFLOPS peak @ 10W total
- 200K FFTs/s (1K complex single precision IEEE754)
- Up to 1GB DRAM for local processing
- Shipping since 1Q04
- Single slot width full-size PCI card

What Applications Can Be Accelerated?

Any applications with significant data parallelism:

- Fine-grained vector operations
- Medium-grained unrolled independent loops
- Coarse-grained multiple simultaneous data channels/sets

Example applications and libraries include:


- Math libraries BLAS, LAPACK (→ Matlab, Maple, …)
- Chemistry GROMACS, CHARMM, BLAST, DLPOLY, ...
- Computational finance Monte Carlo, genetic algorithms
- Intelligent systems artificial neural networks
- Signal processing FFT (1D, 2D, 3D), FIR
- Simulation CFD, N-body, Finite Element
- Image processing filtering, image recognition, DCTs

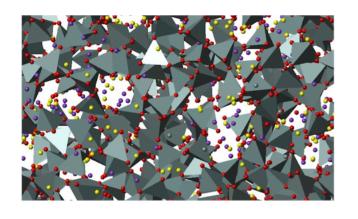
Software Development Environment

Software Development Kit (SDK)

- C compiler, assembler, libraries, visual debugger, etc.
- CS301-based development boards
- Available for Linux and Windows

Applications and libraries under development

- Math L3 BLAS, LAPACK
- DSP FFTs (1D, 2D, 3D)
- Bio/Chemistry GROMACS, DLPOLY, DockIt
- Financial random number generation, Monte Carlo


Porting Code

```
void daxpy(double *c, double *a, double alpha, uint N) {
   uint i;
   for (i=0; i<N; i++)
      c[i] = c[i] + a[i]*alpha;
}</pre>
```



```
void daxpy(double *c, double *a, double alpha, uint N) {
   uint i;
   poly double cp, ap;
   for (i=0; i<N; i+=num_pes) {
      memcpym2p(&cp, &c[i+pe_num], sizeof(double));
      memcpym2p(&ap, &a[i+pe_num], sizeof(double));
      cp = cp + ap*alpha;
      memcpyp2m(&c[i+pe_num], &cp, sizeof(double))
}</pre>
```

ClearSpeed-AWE Joint Investigation

- Chemistry codes: DLPOLY (Molecular Dynamics)
 - Owned by UK Daresbury Lab, heavily used at AWE
 - Widely used in academia and industry
 - 91% of CPU in 5 relatively small routines
 - One of these (forces) calls the other 4 to compute forces on all atoms
 - "forces" called once per time step
 - Data needing to be returned by "forces" from CS to host relatively small
 - Calculation for each atom is independent
- Matrix Multiply Benchmark (SGEMM)
 - CS301 single precision code started at ~20% efficiency
 - AWE helped CS restructure code to give 12 GFLOPS 47%
 - Performance verified by AWE on CS301 hardware
 - Next-generation processor from ClearSpeed significantly increases this performance – "Avebury"