

USING FIELD PROGRAMMABLE GATE ARRAYS IN A BEOWULF CLUSTER

Matthew J. Krzych Naval Undersea Warfare Center

Approved for Public Release, Distribution Unlimited.

Sponsor

DARPA - Advanced Technology Office

- **Given Solution** Robust Passive Sonar Program
- **Program Manager Ms. Khine Latt**

Problem Description

Building an embedded tera-flop machine

- Low Cost
- **Small footprint**
- Low power
- High performance
- Utilize commercially available hardware & software

Application:

Beamform a volume of the ocean

Increase the number of beams from 100 to 10,000,000

On February 9, 2000 IBM formally dedicated <u>Blue</u> <u>Horizon</u>, the teraflops computer. <u>Blue Horizon</u> has 42 towers holding 1,152 compute processors, and occupying about 1,500 square feet. Blue Horizon entered full production on April 1, 2000.

Approach

- Compile matched field "beamformer" onto a chip
 - Specialized circuitry
 - 10x over Digital Signal Processors
 - 100x over General Purpose Processors

 DARPA Embedded High Performance Computing Technology

- » Message Passing Interface (MPI)
- » Myrinet High Speed Interconnect

System Hardware

- **16 Node Cluster**
 - AMD 1.6 GHz and Intel Pentium 2.2 GHz
 - 1 to 4 GBytes memory per node
 - 2U & 4U Enclosures w/ 1 processor per enclosure
 - **\$2,500** per enclosure ^{1.}
- 8 Embedded Osiris FPGA Boards
 - Xilinx XC2V6000
 - **\$15,000** per board ^{1.}
- Myrinet High Speed Interconnect
 - Data transfer: ~250 MBytes/sec
 - Supports MPI
 - **\$1,200** per node ^{1.}
 - \$10,500 per switch ^{1.}

100 BASE-T Ethernet

- System control
- File sharing

Total Hardware Cost¹: \$190K

^{1.} Cost based on 2001 dollars. Moore's Law asserts processor speed doubles every 18 months. 2004 dollars will provide more computation or equivalent computation for fewer dollars.

Hardware Accelerator

Osiris FPGA board

- Developed by ISI / USC
- Sponsored by DARPA ITO Adaptive Computing Systems Program
- 256 Mbyte SDRAM

Xilinix XC2V6000 chip

- ~ 6,000,000 gates
- **2.6 Mbits on chip memory**
- 144 18 by 18 bit multipliers
- PCI bus 64 bit / 66MHz Interface
- Sustained 65 Gflops
- Numerous commercial vendors

System Software

- Multiple programming languages used:
 C, C++, Fortran77, Fortran90, Matlab MEX, VHDL
- Message Passing Interface (MPI)
- Red Hat Linux v7.3
- Matlab
 - System displays
 - Interface to MPI via shared memory
 - Post processing analysis
- Run-time cluster configuration
 - **Supports run-time cluster configuration (hardware & software)**

Computational Performance

WITHOUT hardware accelerator

- 16 nodes (2.2 GHz)
- 5 GFLOPS sustained
 - Single precision

□ <u>WITH</u> hardware accelerator

- 8 FPGA boards
- **500 GFLOPS**
 - Fixed point
 - Pipelining
 - Parallelism

Run-time Cluster Configuration

Developed in-house

- Exploits MPI communication constructs
- Uses Linux shell scripts & remote shell command 'rsh'
- Based on user specified configuration
 - Configuration defined in text file

Allocates system resources at start-up

Identify hardware.				_
availability	Functional Description File			
functionality to execute	FUNCTION ***	NUMBER	VALID HOSTS	
	array_if23	1	x 0	
Map functionality	frontend	1	x 0	
to specific nodes	disp_conv	0	xb	
at run-time	mfp	3	x3, x1, x2, xa	
	collector	1	xa	
	disp_mbtr	1	xc, xb	
	disp mrtr	1	xb, xc	

Benefits

High performance (500 GFLOPS), low cost solution (<200K)</p>

FPGAs

- Performance (100x increase)
- **Small footprint (PCI board)**
- Power
- Beowulf Cluster
 - □ Flexibility /robustness
 - Supports heterogeneous hardware
 - Run-time selection of processors
 - Run-time selection of functions to instantiate
 - Run-time selection of system parameters
 - Scalability
 - Add / remove hardware assets
 - Add / remove functionality

🗆 MPI

- Facilitates flexibility & scalability
- Runs on multiple hardware platforms & operating systems
- Supports multiple communication schemes (point-to-point, broadcast, etc.)

Issues

TECOM MR908TX

FPGAs

- Lengthy development time
- Difficult to debug
- Bit file tuning: sizing, placement, & timing
- Bit files are NOT easily modified
- Bit files are NOT portable

Beowulf Cluster

- Functional mapping
 - Flexibility must be programmed in
- Performance optimization
 - Identifying bottlenecks
 - Load balancing
- Configuration Control
 - System maintenance
 - Keeping track of assets
 - Asset compatibility
- Tool availability

Summary

- Computationally demanding sonar application successfully implemented
 - **Could NOT have been implemented using traditional methods**
- 16 node Beowulf cluster developed using 8 embedded FPGAs
 - Fits in 1 ½ standard 19" racks
 - □ Hardware costs < \$200k
 - □ FPGA software tools < \$40k
- 500 GFLOPS sustained processing achieved

