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Purpose of this Poster

• Discuss initial results of paper-and-pencil studies of 4 application 
kernels applied to a processor-in-memory (PIM) system roughly 
similar to the Cascade Lightweight Processor (LWP) 

• Application kernels:
• Linked list traversal
• Vector sum
• Bitonic sort

• Intent of work is to guide and validate work on Cascade in the areas 
of compilers, simulators, and languages
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Poster Topics
• Generic PIM structure
• Concepts needed to program a parallel PIM system

• Locality
• Threads
• Parcels

• Simple PIM performance model
• For each kernel:

• Code(s) for a single PIM node
• Code(s) for multiple PIM nodes

that move data to threads
• Code(s) for multiple PIM nodes 

that move threads to data
• Hand-drafted timing forecasts, based on the simple PIM performance model

• Lessons learned 
• What programming styles seem to work best

• Looking at both expressiveness and performance

Assembly   This Code  C       C++   Matlab

more expressivecloser to h/w
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