
Initial Kernel Timing Using a
Simple PIM Performance Model

Initial Kernel Timing Using a
Simple PIM Performance Model

Daniel S. Katz1*, Gary L. Block1, Jay B. Brockman2,
David Callahan3, Paul L. Springer1, Thomas Sterling1,4

1Jet Propulsion Laboratory, California Institute of Technology, USA
2University of Notre Dame, USA
3Cray Inc., USA
4California Institute of Technology, USA

*Technical Group Supervisor
Parallel Applications Technologies Group
http://pat.jpl.nasa.gov/
Daniel.S.Katz@jpl.nasa.gov

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under its Contract No. NBCH3039003.

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Purpose of this Poster

• Discuss initial results of paper-and-pencil studies of 4 application
kernels applied to a processor-in-memory (PIM) system roughly
similar to the Cascade Lightweight Processor (LWP)

• Application kernels:
• Linked list traversal
• Vector sum
• Bitonic sort

• Intent of work is to guide and validate work on Cascade in the areas
of compilers, simulators, and languages

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Poster Topics
• Generic PIM structure
• Concepts needed to program a parallel PIM system

• Locality
• Threads
• Parcels

• Simple PIM performance model
• For each kernel:

• Code(s) for a single PIM node
• Code(s) for multiple PIM nodes

that move data to threads
• Code(s) for multiple PIM nodes

that move threads to data
• Hand-drafted timing forecasts, based on the simple PIM performance model

• Lessons learned
• What programming styles seem to work best

• Looking at both expressiveness and performance

Assembly This Code C C++ Matlab

more expressivecloser to h/w

	Initial Kernel Timing Using a Simple PIM Performance Model
	Purpose of this Poster
	Poster Topics

