
Initial Kernel Timing Using a
Simple PIM Performance Model

Initial Kernel Timing Using a
Simple PIM Performance Model

Daniel S. Katz1*, Gary L. Block1, Jay B. Brockman2,
David Callahan3, Paul L. Springer1, Thomas Sterling1,4

1Jet Propulsion Laboratory, California Institute of Technology, USA
2University of Notre Dame, USA
3Cray Inc., USA
4California Institute of Technology, USA

*Technical Group Supervisor
Parallel Applications Technologies Group
http://pat.jpl.nasa.gov/
Daniel.S.Katz@jpl.nasa.gov

This material is based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under its Contract No. NBCH3039003.

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Purpose of this Poster

• Discuss initial results of paper-and-pencil studies of 4 application kernels
applied to a processor-in-memory (PIM) system roughly similar to the
Cascade Lightweight Processor (LWP)

• Application kernels:
• Linked list traversal
• Vector sum
• Bitonic sort

• Intent of work is to guide and validate work on Cascade in the areas of
compilers, simulators, and languages

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Poster Topics
• Generic PIM structure
• Concepts needed to program a parallel PIM system

• Locality
• Threads
• Parcels

• Simple PIM performance model
• For each kernel:

• Code(s) for a single PIM node
• Code(s) for multiple PIM nodes

that move data to threads
• Code(s) for multiple PIM nodes

that move threads to data
• Hand-drafted timing forecasts, based on the simple PIM performance model

• Lessons learned
• What programming styles seem to work best

• Looking at both expressiveness and performance

Assembly This Code C C++ Matlab

more expressivecloser to h/w

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Generic Multi-PIM Structure

Parcel
Handler

Wide
Memory

Wide Registers

Wide ALU
Thread

Scheduler
Parcels

A PIM node

Additional
PIM nodes

Additional
PIM nodes

Communication
Fabric

256 bytes

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Multi-PIM concepts
• Locality

• Define a region in which items which can be operated upon in a
single basic cycle

• Things that are not local are remote

• Threads
• Locus of local control and data
• Associated with a region of memory referred to a set of registers
• Ephemeral - creation and destruction are fast and easy
• States: Active, Blocked

• Active threads are scheduled and run
• Blocked threads become active when some action occurs

• Parcels
• Means of remote action
• A packed version of a thread

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Performance Parameters

Performance Parameters Time (cycles)
Function Unit 1
Memory Cycle 16
Parcel Accept 4
Parcel Create 4
Parcel Transport 256
Thread Create 2
Instruction Cycle 4

• Note that these assumptions are not based on any
particular hardware

• Specifically, they are not based on Cascade

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Synchronization

• Producer/Consumer synchronization implemented
through full/empty semantics

• Each memory location is considered either full or
empty

• This has no other impact on the content of the location
• Stores make a location full by default, but can have

other behavior if needed
• Loads can block until a location is full or empty;

they can make the location either full or empty
when they complete

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Syntax for Full/Empty Loads and Stores

Function Description
val = readfe(&loc) Block until loc is full, then read val, leaving

loc empty after read
val = readff(&loc) Block until loc is full, then read val, leaving

loc full after read
(void) writeef(&loc, val) Block until loc is empty, then write val,

leaving loc full after write
(void) writexf(&loc, val) Write val, leaving loc full after write
(void) purge(&loc) Set loc to empty
flag = REMOTE(&loc) Set flag to true if loc is remote, false

otherwise
flag = LOCAL(&loc) Set flag to true if loc is local, false otherwise
… …

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Linked List Traversal

Pseudocode:
Thread code:
void thread f(int *ptr, int *y) {

int *x;

tag1: x = ptr;
ptr = *(x+1);
if (ptr == NULL) {
*y = *x;
stop;

} else {
goto tag1;

}
}

Calling thread’s code:
f(&head,&result);
last = readfe(&result);

…

NULL

X1

X2

XN

Linked list as stored
in memory:

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Linked List Traversal, Single PIM Case
Code Timing

(cycles)
Comment

This requires thread creation and one instruction cycle
Declaration
One memory cycle (16) needed to load a value from &ptrand one instruction cycle (4)

ptr = *(x+1); 5 Since the load from &ptractually loaded a full wide word, the value at (&x+1) is already in a
register, and copying it to the register we call ptr takes one functional operation and one
instruction cycle. This assumes that &ptr is even.
one functional operation and one instruction cycle
one memory access and one instruction cycle, or 20 cycles
Once the previous write is done, this time doesn’t matter. (It takes 5 cycles, however.)
Branch, which is a single functional operation/instruction cycle
Also a branch, which is a single functional operation/instruction cycle that takes 5 cycles. The
compiler should combine this operation with the previous branch, so this line is free

gototag1; 0

}

}

void thread f(int *ptr, int *y) { 6
int *x; 0

tag1: x = ptr; 20

if (ptr == NULL) { 5
*y = *x; 20
stop; 0

} else { 5

• The time required to run this thread is 6 cycles for startup, 35 cycles for each
element of the list but the last, and 55 cycles for the last element of the list

• This is 35 cycles for each element of the list and 26 additional cycles in startup
and shutdown

• This thread will take 3526 cycles to traverse a list containing 100 elements

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Linked List Traversal, Multiple PIM Case 1
Code Timing

(cycles)
Comment

This requires thread creation and one instruction cycle
Declaration
one functional operation and one instruction cycle

x = ptr; 20 One memory cycle (16) needed to load a value from &ptrand one instruction cycle (4)

if (REM OTE(y)) { 5 one functional operation and one instruction cycle

} else { 5 Branch, which is a single functional operation/instruction cycle

}

f(ptr, y); 276 parcel creation (4), parcel transport (256), and instruction cycle (4), plus parcel decode (8) on
remote node

stop; 0 Once the previous write is done, this time doesn’t matter. (It takes 5 cycles, however.)
}

writexf(y,*x); 296 parcel creation (4), parcel transport (256), and instruction cycle (4) on the local node, plus
parcel accept (8), memory operation (20), and instruction cycle (4) on the remote node (20)

stop; 0 Once the previous write is done, this time doesn’t matter. (It takes 5 cycles, however.)

ptr = *(x+1); 5 Since the load from &ptractually loaded a full wide word, the value at (&x+1) is already in a
register, and copying it to the register we call ptr takes one functional operation and one
instruction cycle. This assumes that &ptr is even.
one functional operation and one instruction cycle

one memory access and one instruction cycle, or 20 cycles
Once the previous write is done, this time doesn’t matter. (It takes 5 cycles, however.)

Branch, which is a single functional operation/instruction cycle
Also a branch, which is a single functional operation/instruction cycle that takes 5 cycles. The
compiler should combine this operation with the previous branch, so this line is free
Branch, which is a single functional operation/instruction cycle

gototag1; 0

} else { 5

}

void thread f(int *ptr, int *y) { 6
int *x; 0

tag1: if (LOCAL(ptr)) { 5

if (ptr == NULL) { 5

*y = *x; 20
stop; 0

} else { 5

Here we send the thread to the data

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Linked List Traversal,
Multiple PIM Case 1 Analysis

• The time required to run this thread is:
6 + N*R1*40 + N*(1-R1)*328 + R2*20 + (1-R2)*296,

• N is the number of element in the list
• R1 is the frequency with which element j+1 is on the same PIM node as element j
• R2 is the frequency with which the last element is on the same PIM node as the

register to which the last value is to be copied
• For 100-element list, with all elements on same PIM node, thread takes 4026

cycles
• Difference between this 4026 cycles and 3526 cycles in single PIM case is

overhead of code used to check for local or remote references
• 100-element list with a blocked distribution on 10 PIM nodes (first 10 elements on

one node, next 10 on another, etc., so R1 = 0.9 and R2 = 0.1), thread takes
~7000 cycles

• 100-element list with a random distribution on 10 PIM nodes (R1 = 0.1 and R2 =
0.1,) thread takes ~29000 cycles

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Code Timing
(cycles)

Comment

This requires thread creation and one instruction cycle
Declaration
one functional operation and one instruction cycle

x = ptr[0]; 20 One memory cycle (16) needed to load a value from &ptrand one instruction cycle (4)

goto tag2; 5 one functional operation and one instruction cycle

tmp[0] = ptr[0]; 8 parcel create (4) and instruction cycle (4)

ptr= *(tmp[1]); 5 one functional operation and one cycle, partially combined with previous line

writexf(y,x); 296 parcel creation (4), parcel transport (256), and instruction cycle (4) on the local node, plus
parcel accept (8), memory operation (20), and instruction cycle (4) on the remote node

stop; 0 Once the previous write is done, this time doesn’t matter. (It takes 5 cycles, however.)
} else { 5 one functional operation and one cycle, partially combined with previous line
*y = x; 5 one functional operation and one cycle, partially combined with previous line
stop; 0 Once the previous write is done, this time doesn’t matter. (It takes 5 cycles, however.)

} else { 5 one functional operation and one cycle, partially combined with previous line
gototag1; 0 combined with line above

}

} else { 5 one functional operation and one instruction cycle
purge tmp[0]; 5 one functional operation and one instruction cycle

Since the load from &ptractually loaded a full wide word, the value at (&x+1) is already in a
register, and copying it to the register we call ptr takes one functional operation and one
instruction cycle. This assumes that &ptr is even.

assumes the compiler can combine this with the previous line
for this to complete, the previously generated parcel must be transported (256), the parcel
accepted/decoded (16), a memory access completed (20), a parcel generated to send that
data back to this processor (4), transport of that second parcel (256), parcel accept on this
node (16), and an instruction cycle (4)

one functional operation and one cycle, partially combined with previous line
one functional operation and one cycle, partially combined with previous line

tag2: if (ptr == NULL) { 5
if REMOTE(y)) { 5

}

void thread f(int *ptr, int *y) { 6
int tmp[2], x; 0

tag1: if (LOCAL(ptr)) { 5

ptr = *(ptr[1]); 5

tmp[1] = ptr[1]; 0
x = readff(&tmp[0]) 572

}

Linked List Traversal, Multiple PIM Case 2

Here we send the data to the thread

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Linked List Traversal,
Multiple PIM Case 2 Analysis

• Timing:
• Starting up a thread takes 6 cycles
• Each local element of the list takes 45 cycles, and each remote element of the list takes 610 cycles
• The final element of the list takes an additional 10 cycles if local and 296 cycles if remote

• For 100-element list with all elements on the same PIM node, thread takes 4506 cycles
• Slightly longer than timing case 1, due to the slightly different way in which this code is written
• Could be written to take ~ 4000 cycles, at the expense of clarity

• For case 2, the assumption of a blocked distribution or a random distribution is unimportant
• For a 100-element list in which 90 elements are on remote nodes, the time required for this

thread about 55000 cycles, almost twice as much as case 1
• In case 1, thread often had to move from one node to another

• Time = parcel transport time x number of elements
• Here, for each element, a parcel has to go to a remote node to get the data and another parcel has

to bring the data back
• Time = 2 x parcel transport time x number of elements

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Linked List Traversal Summary
• Note that case 2 could be rewritten for a known blocked distribution of

elements to gather more than one element at a time, but again, the
round-trip parcel times would make this almost twice a costly as the first
multi-PIM case for a blocked list

• Summary for 100 element list and 10 PIM nodes:
Case Description Number of Cycles (x

1000)
Single PIM node, all elements on 1 node 3.5
Multi-PIM node case 1, all elements on 1 node 4
Multi-PIM node case 1, elements block distributed 7
Multi-PIM node case 1, elements randomly distributed 29
Multi-PIM node case 2, all elements on 1 node 4.5
Multi-PIM node case 2, elements block distributed 55
Multi-PIM node case 2 modified to move elements to
thread in blocks, elements block distributed

~14

Multi-PIM node case 2, elements randomly distributed 55

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Vector Sum, Single PIM Case
Code Timing

(cycles)
Comment

This requires thread creation and one instruction cycle
Declaration

int *end = x + n; 5 one functional operation and one instruction cycle
one functional operation and one instruction cycle

sum += *x; 5 one functional operation and one instruction cycle
one functional operation and one instruction cycle
branch, which is a single functional operation/instruction cycle
branch, which is a single functional operation/instruction cycle
one functional operation and one instruction cycle*result = sum; 5

}

}

void thead vector_sum(int *x, int n, int *result) { 6
int sum; 0

tag1: if (x < end) { 5

x++; 5
gototag1; 5

} else { 5

• Starting the thread takes 16 cycles, each element
of the vector takes 20 cycles, and the final element
takes an extra 15 cycles

• Time needed for vector of length N is 31+20*N
• For vector of length 100,000, ~ 2,000,000 cycles

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Vector Sum, Multiple PIMs
Case 1: Case 2:
void thread vector_sum(int *x, int n, int *result) {

int *res;
int i, sum, num_blocks;

num_blocks = n/BLOCKSIZE;

res = malloc(num_blocks*sizeof(int));

for (i=0; i<num_blocks; i++) {

purge(&res[i]);

vector_sum0(x+i*BLOCKSIZE, &res[i]);

}

sum = 0;

for (i=0; i<num_blocks; i++) {

sum += readff(&res[i]);

}
*result = sum;

}

void thead vector_sum0(int *x, int *result) {

int sum;

int *end = x + BLOCKSIZE;

tag1: if (x < end) {

sum += *x;

x++;

goto tag1;

} else {

*result = sum;
}

}

thread vector_sum(int *x, int n, int *result) {

int right, left, k;
int *end;

if (n > BLOCKSIZE) {

// if more than one block, recurse in parallel

// then add results

k = (n < 2*BLOCKSIZE) ? BLOCKSIZE :

(n/2) & ~(BLOCKSIZE-1);

purge(&left);

purge(&right);

vector_sum(x+k, n-k, &right);

vector_sum(x, k, &left);

*result = readff(&left) + readff(&right);

} else {
end = x + n;

right = 0;

tag1: if (x < end) {

right += *x;

x++;

goto tag1;

}

*result = right;

}

}

Vector distributed by BLOCKSIZE contiguous elements on a node

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Vector Sum Analysis and Discussion
• Case 1:

• # parcels = 2*n/BLOCKSIZE
• # threads = n/BLOCKSIZE+1

(n/BLOCKSIZE threads do sums)
• First thread needs n/BLOCKSIZE extra

words of memory
• To avoid extra memory in thread 1:

• Could use atomic memory operations in
vector_sum0, where these threads would
increase a running sum in vector_sum by
their partial sum, then increment a counter
in vector_sum

• vector_sum would block on the counter
until all vector_sum0 threads finished

• 1/2 the parcels issued at single time from
one PIM node

• Likely other 1/2 will be sent back to the
PIM node at about the same time as each
other

• Potential for network hotspots

• Case 2:
• # parcels = 4*n/BLOCKSIZE-4
• # threads = 2*n/BLOCKSIZE-1

(n/BLOCKSIZE threads do sums)
• 2x threads of case 1
• 2x parcels of case 1
• Each thread uses only about 4 words of

memory more than case 1
• No hotspot issues

• Timing of both cases likely similar
• Both dominated by BLOCKSIZE (the

actual sums)
(Assuming that n/BLOCKSIZE is big)

• Option chosen depends on resource
issues and relative cost of thread creates,
memory operations, network issues, etc.

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Bitonic Sort
Pseudocode:
for (k = 2; k <= N; k = k * 2) {

for (j = k / 2; j >= 1; j = j / 2) {

for (i = 0; i < N; i = i + 1) {

ij = îj;

if (ij>i) {

p1 = ((i&k)==0);

p2 = (x(i) > x(ij));

if (p1 == p2) { //if p1, want x(i) < x(ij), if not p1, want x(i) > x(ij)
tmp = x(i);

x(i) = x(ij);

x(ij) = tmp;

}

}

}

}

}

The comparisons and possible swaps
in a bitonic sort of N(=16) elements:

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Bitonic Sort - Single thread
void thread bitonic_sorter(int *y, int *data, int N) {

int i,j,k,ij,x1,x2;

for (k = 2; k <= N; k = k * 2) {

for (j = k / 2; j >= 1; j = j / 2) {

for (i = 0; i < N; i = i + 1) {

ij = îj;

if (ij>i) {

// get the two values

purge(x1);

purge(x2);

x1 = readfe(&(data[i]));

x2 = readfe(&(data[ij]));

//check for a swap

p1 = ((i&k)==0);

p2 = (readff(&x1) > readff(&x2));

if (p1 == p2) {

// send back the swapped values

writexf(&(data[i]), x2);

writexf(&(data[ij]), x1);

} else {

writexf(&(data[i]), x1);

writexf(&(data[ij]), x2);

}

}

}

}

}

writexf(y,1);

}

• Single thread
• Reads each pair of potential swap

values, then writes them back in
potentially swapped order

• An alternative is to start a thread at
the first potential swapee’s location,
and let it decide to do or not to do a
swap, based on the value at the
second potential swapee’s location

• Two ways to write this code, as
shown next…

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Bitonic Sort with Parallelism
• Synchronization becomes important
• Must ensure that swaps from each stage use data that belongs to that stage
• Two methods below work, first (a) is used because it has less communication
• Bitonic_sorter thread could start each potential swap, block until potential swap completes
• Or, could start all potential swaps for a stage at once, wait for them all to return

• Would have N+1 threads active at once (1 bitonic sorter, N/2 comp_swap1, N/2 comp_swap2)
• See code on next panel

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Bitonic Sort Code - Multiple threads
void thread bitonic_sorter(int *y, int *data,

int N) {

int i,j,k,ij,tmp;

for (k = 2; k <= N; k = k * 2) {

for (j = k / 2; j >= 1; j = j / 2) {

for (i = 0; i < N; i = i + 1) {

ij = îj;

if (ij>i) {

order = ((i&k)==0);

// start a thread to do the

// potential swap

purge(&tmp);

(void) comp_swap1(&(x[i]),&(x[ij]),
order, &tmp);

ij = readfe(&tmp);

}

}

}

}

}

void comp_swap1 (int *my_x_loc,
int *other_x_loc, logical order,
int *end) {

purge (my_x_loc);

comp_swap2(other_x_loc, *my_x_loc,
order, my_x_loc);

(void) readff(my_x_loc);

writexf(end,1);

}

void comp_swap2 (int *my_x, int other_x,
logical order, int *other_x_loc) {

int tmp;

if (order == (other_x > *my_x)) {

tmp = *my_x;

*my_x = other_x;

} else {

tmp = other_x;

}

writexf(other_x_loc, tmp);

}

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Bitonic Sort - Other Options
• Could create a thread for each comparison/exchange operation (one for each pair of i iterations)

• Each thread could execute when its predecessors had completed
• log2(N) stages w/ between 1 and log2(N) steps w/ N/2 compare/exchange operations => threads

• only ~ N/2 threads active at any time

• Could create all the needed threads at once, where each blocks until two parcels are received from its
predecessors

• Do this by working backwards, spawning threads for last stage of sorts, then next to last stage of sorts, etc.
• Syntax issue: how to tell thread where to send parcels when thread creator doesn’t have info about thread’s frame
• Other issue: creating this number of threads may be problematic.

• Could do this using objects
• Create a sorter object that waits for 2*N messages before sending a parcel back to the creator thread
• Create objects for last stage’s swaps, w/ each object created on PIM node holding first element of that swap; tell

objects not to start until they receive two parcels, and to send two messages to the sorter object when they are done
• Then create next-to-last set of swapper objects, tell them to wait for 2 parcels, and when they are done to send a

message to each of the appropriate swapper objects in last set
• This process continues until we reached first stage’s swapper objects, which are told to start immediately upon

creation, and to send a message upon completion to each of the second stage’s swapper objects
• Total umber of objects created ~= number of threads in the previous example
• Main differences: Objects may use fewer resources than threads; syntax issues with threads communicating with

other threads doesn’t appear
• Could rewrite code on previous panel as one thread per data element

• Equivalent to swapping order of the loops so that i is the outermost loop, and parallelizing across I
• Could be written using threads or objects
• Difficult to write with threads, because it requires threads to be created with the knowledge of other threads, where

those other threads have not yet been created, but since these threads have not yet been created, the addresses of
their registers do not exist

• Easier to write with objects

(log2 N)(log2 N +1)N
4

Parallel Applications Technologies Group - http://pat.jpl.nasa.gov/

Conclusions
• Moving thread to data has

potential to shorten runtime
• Coding for parallelism

introduces overhead even
when no parallelism exists

• Fairly simple syntax can be
used to express complicated
synchronization behaviors

• Tradeoffs between recursive
and non-recursive thread
programming should be
examined

• Resource issues are
important to understand, but
may be very implementation
dependant

• Some communication patterns are
difficult to express w/ threads, but may
be easier to express w/ objects (as
shown above)

