FPGAs & Software
Components

Graham Bardouleau & Jim Kulp
Mercury Computer Systems, Inc.

High Performance Embedded Computing (HPEC) Conference
September 29, 2004

The Ultimate Performance Machine

© 2004 Mercur y Computer Systems , Inc.

The Ultimate Performance Machine

e FPGAs can now be used as scalable processing resources in
heterogeneous multicomputers, not just I/O enhancers or glue
logic.

e Many applications need multiple processor types for “best fit”
(power, weight, etc.).

e We must enable FPGAs to be “full peers” in the multicomputer,
without undue tax on FPGA resources.

Interchassis Connections
network, fabric, links

© 2004 Mercury Computer Systems, Inc. 2

MR FPGAs & Software Components

The Ultimate Performance Machine

Approach

e Our approach has two thrusts:

¢ Component programming models at application level
and component level, building on standards.

« How to write applications, as a set of components
« How to write components, as building blocks for apps

¢ |Infrastructure elements that enable a common control
model, and common communication model between

peer processors of all types, including the
“middleware” for FPGAs

« How components are managed
« How components communicate with each other

© 2004 Mercury Computer Systems, Inc.

Computer Systems, Inc.

MUY FPGAS & Software Components

The Ultimate Performance Machine

Application Programming Model

e Enable all processing resource types to be easily
Integrated (and changed/inserted).

e Support real world, flexible mixing of GPPs, DSPs,
FPGAS.

e The Component Software model does it.
+ A hardware-ish way of building software, usable for FPGASs

¢ Application building blocks that can have different
iImplementations (even different source code), for different
processor types

e Standards are established for this (OMG and JTRS).

e We build on this heterogeneous model to embrace
FPGAS.

© 2004 Mercury Computer Systems, Inc. 4

My \What's a Component?

The Ultimate Performance Machine

e A (software/FPGA) package which offers services through
interfaces.

e A reusable part that provides the physical packaging of
Implementation elements.

e An independently deliverable package of software that can be
used to build applications or larger components, or be an
application itself.

e A unit of software that is pre-built, packaged, self-describing,
which can be individually deployed or updated or replaced in
the field. It can be sent as an email attachment.

e A well behaved DLL on steroids?

© 2004 Mercury Computer Systems, Inc. 5

Component Definition

e Defined for its “users” by: Ports that provide service
¢ Ports that provide a service via an / \
®

interface/protocol (component acting as server)

+ Ports that require (use) a service via an SN, PRI
. . . - Color: red (default)
interface/protocol (component acting as client)

+ Configuration (instantiation) parameters. o~

* An overall functional behavior Ports trérequireaservice

e Packaging (e.g. zip archive) of compiled code

files (e.g. DLLs) and descriptive metadata (e.g. Component Package
XML). (e.g. ZIP file)

- Definition
e Metadata allows tools and runtime

environments to know how to use, configure, _
o . Implementation
run them, after it is compiled and packaged. Metadata

Compiled Compiled
Code Code

© 2004 Mercury Computer Systems, Inc. 6

MECUR ™ \What’s an Application?

The Ultimate Performance Machine

e An application’s functionality is created by using
components as parts in an assembly, and wiring together
their required and provided ports.

e Assemblies can be used as components in higher level
assemblies, enabling an application to be used as a
component in a new application.

e Assemblies are described in metadata (usually XML), not
code.

4 N

@

© 2004 Mercury Computer Systems, Inc. 7

Computer Systems, Inc.

MERC

R FPGAs & Software Components

The Ultimate Performance Machine

FPGA Component Model

e Effective use of FPGA technology still requires
writing VHDL, and sometimes special
features/macros of specific FPGASs.

e Define and enable standard VHDL interfaces for
external interactions, enabling peering with other
component types.

e Provide more portability and less dependency on
choices of FPGA, fabric technology and peer
processor types.

© 2004 Mercury Computer Systems, Inc. 8

MECUR™™ FPGAs & Software Components

The Ultimate Performance Machine

FPGA Component Model

e Exposed interfaces for the VHDL designer
¢+ Local memory (scratch, LUT, or comm buffers)

¢ Data ports for communicating with other components (FIFO
style or randomly addressable comm buffers)

¢+ Runtime configuration parameters (scalars)
¢+ Execution control (start/stop/reset etc.)
¢+ Local FPGA resources or I/O (generally not portable)

Application
Component

Logic

© 2004 Mercury Computer Systems, Inc. 9

MECUR™ |nfrastructure Elements

The Ultimate Performance Machine

How to “bring FPGASs into the first world”?

e A common control model and mechanisms
that can work across processor classes:

¢ Load, initialize, configure, start, stop, connect, etc.

* Top level server manages a collection of
processors, assuming they can all run and connect
components.

© 2004 Mercury Computer Systems, Inc. 10

MECUR™ |nfrastructure Elements

The Ultimate Performance Machine

How to “bring FPGASs into the first world”?

e A control & deployment mechanism that works across
processor classes:
¢ Load, initialize, configure, start, stop, connect, etc.

+ Top level service manages a collection of processors, that can all run
and connect components.

¢+ Each processor is self-managed or managed by proxy (FPGA).

Deployment omputer £ Omputer b
System/
. D = ProCe 0 » ~
Service 0 O 0 O
Component SOl £ Component

2

I : :
Component

3

Packaged
Components

© 2004 Mercury Computer Systems, Inc. 11

MECUR™ |nfrastructure Elements

The Ultimate Performance Machine

How to “bring FPGASs into the first world”?

e A data movement and synchronization model that can be
supported locally on all processor classes, including FPGAS,
with no central control at runtime.

¢+ Streaming data flow

¢ Data reorg (striping/partitioning)

¢+ Request/response messaging

+ |[nteroperable between processor classes on a fabric

¢ Based on current standards, extended to cover a broader set of

processor classes SIMD

Inputl “component Set B~ Outputl
(x2)

SIMD Stream#1

Component Set A Outputl
(x3)

Component C Outputl
(x1)

© 2004 Mercury Computer Systems, Inc. 12

MERCURY™ FPGA Infrastructure Elements

The Ultimate Performance Machine

Outside-the-FPGA support software

e The FPGA driver and proxy code to treat FPGAs as “computers
than can load and run code that talks to others.”

e Implement the common component control and deployment
model for FPGAs by proxy.
¢+ Loading FPGA programs
« Partial loading still a challenge with today’s FPGA technologies

¢ Configuration, control, and communication setup, via touching on-
chip infrastructure elements

+ Does not participate in data flow or synchronization

FPGA Processor Other Processor

Some GPP

Control/Deployment

© 2004 Mercury Computer Systems, Inc. 13

MERCUR "FPGA Infrastructure Elements

The Ultimate Performance Machine

On-chip infrastructure

e Hardware abstraction (like an OS)
¢+ Memory technology
¢ Fabric/Bus attachment technology, with DMA
+ |/O technology

e Component abstraction (like middleware)
+ Configuration (runtime parameters)

¢ Execution control

¢ Communication with other components,
local or remote

¢+ How FPGA components are written
(in VHDL)

RACEway
Crossbar

FCNalP Framewark

Component Abstraction

Hardware Abstraction

On-Chip and Adjacent Hardware

© 2004 Mercury Computer Systems, Inc. 14

