
Introduction to Intrusion
Detection Systems

Firewall/Intrusion
Detection System

U
np

ro
te

ct
ed

 In
te

rn
et

Pr
ot

ec
te

d
In

tra
ne

t

Quarantined Packets

What is Intrusion Detection?

• All incoming packets are filtered for specific
characteristics or content

• Databases have thousands of patterns requiring
string matching
– FPGA allows fine-grained parallelism and

computational reuse
• 10 Gb/s and higher rates desired

– Provided by pipelined, streaming architectures

Other Approaches

• Objective: find all occurrences of a pattern in an input

• Naïve approach: O((n-m+1)m)

• Shift-and-compare: O(n), large hardware requirements,
O(nm) work

• Hashing: O(n), hashing can be complex, O(nm) work

• KMP: O(n): other algorithms may be faster in practice,
but do not provide low precise upper bound (2n – m),
O(n+m) work

High-Performance Shift-and-Compare
Architectures

Various contributions to shift-and-compare architectures:

• Pre-decoded architecture provides significant area
and routing improvements over encoded data

• Graph-based partitioning of patterns allows for
reduced routing complexity and increased frequency
performance through multiple pipelines

• Average of 15% decrease in area, 5% decrease
in clock period over unpartitioned unary

Methodology Flow

Pattern
Database

Create
Weighted Similarity

Graph
Partition Graph

Synthesis and
Place and Route

(Xilinx tools)

Generate
Synthesizable

VHDL
Generate Prefix Trees

Create Pipeline
Data Structures

• Trie-based prefix grouping allows for reduced area
consumption through lower redundant comparisons

• 4-byte prefixes turn out to be very appropriate for intrusion
detection:

/cgi-bin/bigconf.cgi
/cgi-bin/common/listrec.pl
/cgi-sys/addalink.cgi
/cgi-sys/entropysearch.cgi

• Replication of hardware and delays allow for multi-byte
per cycle throughput at high clock rates

• Pipeline is not increased in size – large source of slice
consumption

• Front end decoders increases in size by k

• Back end matchers increase in size by k

Reduction of Resource Usage

Partition B
Match1

Partition B
Match2

/ r o t s h

Partition B, Reg 0

Partition B, Reg 1

Partition B, Reg 2

Partition B, Reg 3

. r

Partition A, Reg 0

Partition A, Reg 1

Partition A, Reg 2

Partition A, Reg 3

Input Character

Partition A
Match 1

Partition A
Match 2

Partition B, Reg 4

 1 way 4 way 8 way

Number of Slices 299 721 1338

Clock Period 4.2ns 4.6ns 5.3ns

Throughput 1.9Gb/s 6.9Gb/s 12.1Gb/s

Efficiency 1 1.51 1.41

*Efficiency in throughput/area, normalized to 1-way (~100 rules)

Customized Performance

• Variations in tool flow provide customizable performance:

– Tool Options

• Small: partitioned and pre-decoded architecture

–Prefix trees

• Fast: k-way architecture

• Fast reconfiguration, minimum complexity

–KMP architecture

Comparison of Related Architectures

Design Throughput Unit Size Performance
USC Unary 2.1 Gb/s 7.3 283

USC Unary (1 byte) 1.8 Gb/s 5.7 315
USC Unary (4 byte) 6.1 Gb/s 22.3 271
USC Unary (8 byte) 10.3 Gb/s 32 322

USC Unary (Prefilter) 6.4 Gb/s 9.4 682
USC Unary (Tree) 2.0 Gb/s 6.6 303

Los Alamos (FPL '03) 2.2 Gb/s 243 9.1
UCLA (FPL '02) 2.9 Gb/s 160 18

UCLA w/Reuse (FCCM '04) 3.2 Gb/s 11.4 280
U/Crete (FPL '03) 10.8 Gb/s 269 40.1

U/Crete (FCCM '04) 9.7 Gb/s 57 170
GATech (FCCM '04) 7.0 Gb/s 50 140

* Throughput is assumed to be constant over variations in pattern size.
Unit size is the average unit size for a 16 character pattern (in logic cells;
one slice is two logic cells), and performance is defined as Mb/s/cell).

Incremental Architecture Synthesis

• Goal: Reduce place and route costs

• Cost for changing rules in one of k partitions:
overhead + 1/k

• Key: Predefinition of area constraints

Determining the Optimal Partition

()

j

i

P

i
j

ipi PS

δ

δδ

δ

in are jpartition toadd tocharacters

such that j find

\

min
0

*

=

=

=

Definitions:

• Sp* the set of characters required to represent the new pattern p*.

• The set difference between the characters currently represented in Pi
and the characters that are present in Sp* is

• The partition which will require the addition of the minimum number
of new characters is the optimal partition Pj.

• The optimal partition is selected from the set of partitions P.

jδ

Relevant Publications

“Time and Area Efficient Pattern Matching on FPGAs,”
Proceedings of the 12th Annual ACM International
Symposium on Field-Programmable Gate Arrays (FPGA '04)

“A Methodology for the Synthesis of Efficient Intrusion
Detection Systems on FPGAs,” Proceedings of the Twelfth
Annual IEEE Symposium on Field Programmable Custom
Computing Machines 2004 (FCCM '04)

“Automated Incremental Design of Flexible Intrusion
Detection Systems on FPGAs,” Proceedings of the Eighth
Annual Workshop on High Performance Embedded
Computing (HPEC '04)

Additional publications: http://ceng.usc.edu/~prasanna

