

Processing Challenges in Shrinking HPEC Systems into Small Platforms

Stephen Pearce & Richard Jaenicke Mercury Computer Systems, Inc.

High Performance Embedded Computing (HPEC) Conference September 28, 2004

The Ultimate Performance Machine

Platforms with SWAP Constraints - UAVs

UAV	Global Hawk	Pred- ator B	Heron A	Hunter	Eagle Eye	Fire- Scout	Sentry	Dragon Warrior	Dragon Eye
Picture		44	A				1		1
Length (ft)	44.4	36	26	22	17	23	8.4	10	3
Wingspan (ft)	116	66	54	29	17	20	12.8	9	3.8
Height (ft)	14	9.5	5.9	5.6	5.5	9.5	4	5	1
Payload Weight (lbs)	1000	800	550	250	200	200	75	35	5
Max Altitude (ft)	65k	50k	25k	15k	20k	20k	15k	4k	1.2k
Sensors	EO/IR SAR ISAR SIGINT MTS	EO/IR SAR ISAR SIGINT MTS	EO/IR SAR ISAR SIGINT MTS	EO/IR SAR ISAR MTS	EO/IR SAR ISAR SIGINT MTS	EO/IR SAR ISAR SIGINT MTS	EO/IR	EO/IR	EO/IR
Endurance (hrs)	36	36	36	10	5	4	3	3	1
Max Airspeed (kts)	320	220	120	100	220	120	100	70	35

- UAVs height is very small; tends to lead to smaller system designs than 6U arrayed on base of fuselage/wings
- Payload weight is small, thus weight constrained solutions are demanded

- UAVs tend to fly fairly high. A
 consequence is that without life support
 environments (no man) at this altitude,
 conduction cooled becomes mandatory.
- All traditional HPEC applications are represented on all the platforms.

Scaling the Processing

500 MHz class PPC x 4 = 16 GFLOPS per slot =>

- 6 slot=96 GFLOPS
- 12 slot=192 GFLOPS
- 20 slot=320 GFLOPS
- Assumptions
 - FPGA= Equivalent 40-100 GFLOPS
 - 500 MHz PPC=4 GFLOPS

Small

- 2x 1GHz class PPC per board or 2 FPGA per board=>
 - 2 slot=96-216 GFLOPS
 - 4 slot=112-616 GFLOPS
 - 8 slot=224-1232 GFLOPS
- => Future FPGA +
 PPC exploitation on
 3U better than
 existing 6U

Current PPConly Solutions (e.g. 6U VME chassis)

2-4x processing – same system dimensions

Future PPC-only Solutions

4x 1.5 GHz class PPC = 48 GFLOPS per slot =>

- 6 slot=288 GFLOPS
- 12 slot=576 GFLOPS
- 20 slot=960 GFLOPS
- => PPC exploitation of VITA 46

Future
Heterogeneous
Solutions

4x 1 GHz class PPC per board or 2 FPGA per board=>

- 6 slot=192-1032 GFLOPS
- 12 slot=384-2232 GFLOPS
- 20 slot=640-3832 GFLOPS

=>FPGA + PPC exploitation on VME