
Morph Taxonomy

Morphware Stable Interface Architecture

Software Architectures for Morphing in 
Polymorphous Computing Architectures
Software Architectures for Morphing in 

Polymorphous Computing Architectures
Dan Campbell, Mark Richards 
Georgia Institute of Technology

Dennis Cottel, Randall Judd 
USN SPAWAR Systems Center, San Diego

The Morphware Stable Interface
Standard PCA Application Environment

Defined by a set of open standards documents

Based on a virtual machine (VM) abstraction 
layer with standardized metadata and 
programming languages
Goals

Foster software portability across PCA architectures
Dynamically optimize PCA resources for application 
functionality, service requirements, and constraints
Obtain nearly optimal performance from PCA hardware
Be highly reactive to PCA hardware and user inputs
Manage PCA software complexity
Leverage existing and developing technologies

Cross-project effort, developed in parallel with 
the hardware

For more information: www.morphware.org

Source Code

SVM Code TVM Code

Application
Metadata

Application 
Programmer Provides:

Machine Model

Runtime System

A
rchitecture V

endor 
P

rovides:

HIGH-LEVEL COMPILER

LOW-LEVEL COMPILER/LINKER/LOADER

PCA SYSTEM

Executable Binary

Stream Code Thread Code

Th
ird

 P
ar

tie
s

P
ro

vi
de

:

Libraries

Libraries

Morphing in the MSI
MSI assumes component-based architecture

natural and intuitive boundaries for compilation and run- time 
reconfiguration
natural support for multiple SWEPT- variant implementations of 
units of functionality

Morphing implies changing …
component implementations in use;
resources assigned to components;
or both

Implies a taxonomy of morph types
Morphing will be implemented at various levels 
of MSI

compiler
run- time system
resource manager

SAPI and SAAL
Two intermediate representations

Stable API: application code in C/C++ and a stream 
language such as Brook or Streamit
Stable Architecture Abstraction Layer: PCA virtual 
machine code

Development Process
Two-stage compile process enables portable 
performance across PCA architectures

VM Layers
User accesses User-
level VM for thread 
code, Stream VM for 
stream code
TVM- HAL abstracts 
low- level hardware to 
UVM

Machine Models
Used to optimize VM 
output for different 
target platforms

Coarse grain mapping of 
application to target 
resources

Describes target 
platform using 
common dictionary of 
virtual resources and 
attributes

Processors
Memories
Net- Links

L2
cache

GMEM

Stream.
Proc

Local
RAML1

Instr

L1
Data

Thread.
Proc

L1
Instr

L1
Data

Stream.
Proc

Stream.
Proc

Local
RAM

Local
RAM

L1
Instr

L1
Instr

L1
Data

L1
Data

Example: University of Texas TRIPS
Machine Model for R-Stream 1.1

DMA

DMADMA

Compiler 
switches to a 

different library 
that uses 
different 

resources.

Compiler 
requests 
different 

resources to 
meet change in 

performance 
specified by 
metadata.

Application 
makes API call 

to add or 
replace one or 

more 
components 

using different 
resources.

Application 
makes API call 
to give up or 
gain some 
resources.

Run-time 
system 

configures 
resources and 

loads 
components at 

application 
startup.

Run-time 
system 

changes 
resource 

allocation of a 
running 

application 
transparently to 
the application.

Type 5bType 4bType 3bType 2bType 1bType 0b

Resource 
allocation 
changes

Compiler 
switches to a 

different library 
able to use the 

same 
resources.

Compiler 
instructions 
reconfigure 
allocated 

resources.

Application 
makes API call 

to change 
processing 

mode but does 
so within 
existing 

resource set.

Application 
makes API call 

to make 
suggestions.

Run-time 
system 

changes 
components to 
reconfigured 

but equivalent 
set of 

resources.

Run-time 
environment 

changes 
transparently to 

the running 
application.

Type 5aType 4aType 3aType 2aType 1aType 0a

Resource 
allocation 

doesn’t change

Components 
change

Components 
continue

Components 
change

Components 
continue

Components 
change

Components
continue

Compiling SystemApplication ProgrammerRun-time System

Compiler 
switches to a 

different library 
that uses 
different 

resources.

Compiler 
requests 
different 

resources to 
meet change in 

performance 
specified by 
metadata.

Application 
makes API call 

to add or 
replace one or 

more 
components 

using different 
resources.

Application 
makes API call 
to give up or 
gain some 
resources.

Run-time 
system 

configures 
resources and 

loads 
components at 

application 
startup.

Run-time 
system 

changes 
resource 

allocation of a 
running 

application 
transparently to 
the application.

Type 5bType 4bType 3bType 2bType 1bType 0b

Resource 
allocation 
changes

Compiler 
switches to a 

different library 
able to use the 

same 
resources.

Compiler 
instructions 
reconfigure 
allocated 

resources.

Application 
makes API call 

to change 
processing 

mode but does 
so within 
existing 

resource set.

Application 
makes API call 

to make 
suggestions.

Run-time 
system 

changes 
components to 
reconfigured 

but equivalent 
set of 

resources.

Run-time 
environment 

changes 
transparently to 

the running 
application.

Type 5aType 4aType 3aType 2aType 1aType 0a

Resource 
allocation 

doesn’t change

Components 
change

Components 
continue

Components 
change

Components 
continue

Components 
change

Components
continue

Compiling SystemApplication ProgrammerRun-time System

StreamIt Brook C/C++ Others…
Stable APIs (SAPI)

Stable Architecture
Abstraction Layer 
(SAAL)

Binaries

Low Level Compilers

TRIPS MONARCH Smart Memories RAW Others...

High Level Compilers

Virtual Machine API

Machine Model
Metadata Context

SVM
TVM-HAL

UVM SVM
TVM-HAL

UVM

Applications
LIBsOSs

SVM

Hardware
TVM-HAL

UVM




