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The Morphware Stable Interface
Standard PCA Application Environment

Defined by a set of open standards documents

Based on a virtual machine (VM) abstraction 
layer with standardized metadata and 
programming languages
Goals

Foster software portability across PCA architectures
Dynamically optimize PCA resources for application 
functionality, service requirements, and constraints
Obtain nearly optimal performance from PCA hardware
Be highly reactive to PCA hardware and user inputs
Manage PCA software complexity
Leverage existing and developing technologies

Cross-project effort, developed in parallel with 
the hardware

For more information: www.morphware.org
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Morphing in the MSI
MSI assumes component-based architecture

natural and intuitive boundaries for compilation and run- time 
reconfiguration
natural support for multiple SWEPT- variant implementations of 
units of functionality

Morphing implies changing …
component implementations in use;
resources assigned to components;
or both

Implies a taxonomy of morph types
Morphing will be implemented at various levels 
of MSI

compiler
run- time system
resource manager

SAPI and SAAL
Two intermediate representations

Stable API: application code in C/C++ and a stream 
language such as Brook or Streamit
Stable Architecture Abstraction Layer: PCA virtual 
machine code

Development Process
Two-stage compile process enables portable 
performance across PCA architectures

VM Layers
User accesses User-
level VM for thread 
code, Stream VM for 
stream code
TVM- HAL abstracts 
low- level hardware to 
UVM

Machine Models
Used to optimize VM 
output for different 
target platforms

Coarse grain mapping of 
application to target 
resources

Describes target 
platform using 
common dictionary of 
virtual resources and 
attributes

Processors
Memories
Net- Links

L2
cache

GMEM

Stream.
Proc

Local
RAML1

Instr

L1
Data

Thread.
Proc

L1
Instr

L1
Data

Stream.
Proc

Stream.
Proc

Local
RAM

Local
RAM

L1
Instr

L1
Instr

L1
Data

L1
Data

Example: University of Texas TRIPS
Machine Model for R-Stream 1.1
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Stable APIs (SAPI)

Stable Architecture
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