Application-Specific Optical Interconnects for Embedded Multiprocessors

Neal K. Bambha
US Army Research Laboratory
Shuvra S. Bhattacharyya
University of Maryland, College Park

nbambha@eng.umd.edu, ssb@eng.umd.edu

Introduction

- Develop software tools and algorithms to efficiently map digital signal and image processing ("DSP") applications onto Systems on Chip.
 - Joint scheduling/interconnect synthesis optimization
 - Scheduling for low-hop communication on arbitrary topologies
 - Synthesize an optimal application-specific interconnect topology

Scheduling

- Task graph G(V, E), $\nu \in V$, $e \in E$
 - Dataflow specification
 - General point-to-point networks
- Topology graph T(P,L), $p \in P$, $l \in L$
 - Link constraints
 - Processor fanout constraints
 - $l = (p_i, p_j)$ assigned weights—delay and power
 - $\mathscr{E}(G, T, n) = \sum_{e \in E} \left(\mathrm{IPC}(e) \sum_{l \in \mathrm{route}(e)} \epsilon_{\mathrm{bit}}(l) \right)$
- Communication hop limit

Effect of Topology

Low Hop Communication Saves Energy

Compare communication energy across a range of randomly generated topologies with single-hop and 3-hop limit.

Application-Specific Interconnect Topologies

- Design constraints for optical interconnects
 - Topology—total links, maximum fanout
 - Performance—throughput, power
- Joint schedule/topology optimization
 - GA generates population of solution candidates T(P, L)
 - Scheduler evaluates fitness of each T
 - * DLS adapted for arbitrary topologies
 - * Avoids deadlock, calculates *flexibility*
 - * Contructs hop-limited schedules
 - Given constraints on T, miximize performance
 - Given constraints on performance, optimize T