

High Performance Embedded Computing Software Initiative (HPEC-SI)

Dr. Jeremy Kepner / Lincoln Laboratory

This work is sponsored by the Department of Defense under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

- Goals
- Program Structure

- Demonstration
- Development
- Applied Research
- Future Challenges

Summary

Overview - High Performance Embedded Computing (HPEC) Initiative

<u>Challenge:</u> Transition advanced software technology and practices into major defense acquisition programs

Common Imagery Processor (CIP)

Why Is DoD Concerned with Embedded Software?

- COTS acquisition practices have shifted the burden from "point design" hardware to "point design" software
- Software costs for embedded systems could be reduced by one-third with improved programming models, methodologies, and standards

MITRE

MIT Lincoln Laboratory

Issues with Current HPEC Development

Inadequacy of Software Practices & Standards

- High Performance Embedded Computing pervasive through DoD applications
 - Airborne Radar Insertion program
 85% software rewrite for each hardware platform
 - Missile common processor
 Processor board costs < \$100k
 Software development costs > \$100M
 - Torpedo upgrade

Two software re-writes required after changes in hardware design

- Not portable
- Not scalable
- Difficult to develop
- Expensive to maintain

MIT Lincoln Laboratory

Evolution of Software Support Towards "Write Once, Run Anywhere/Anysize"

- Application software has traditionally been tied to the hardware
- Many acquisition programs are developing stove-piped middleware "standards"
- Open software standards can provide portability, performance, and productivity benefits
- Support "Write Once, Run Anywhere/Anysize"

Program Goals

- Develop and integrate software technologies for embedded parallel systems to address portability, productivity, and performance
- Engage acquisition community to promote technology insertion
- Deliver quantifiable benefits

Portability:	reduction in lines-of-code to	
	change port/scale to new	
	system	
Productivity:	reduction in overall lines-of-	
	code	
Performance:	computation and	

MITRE

communication benchmarks

MIT Lincoln Laboratory

Slide-7 www.hpec-si.org

Organization

- Partnership with ODUSD(S&T), Government Labs, FFRDCs, Universities, Contractors, Vendors and DoD programs
- Over 100 participants from over 20 organizations

Common Imagery Processor

• AEGIS BMD (planned)

• Introduction

- Development
- Applied Research
- Future Challenges
- Summary

38.5"

Common Imagery Processor

- Demonstration Overview -

Slide-11 www.hpec-si.org * CIP picture courtesy of Northrop Grumman Corporation

Common Imagery Processor - Demonstration Overview -

Processor

Demonstrate standards-based platformindependent CIP processing (ASARS-2)

- Assess performance of current COTS portability standards (MPI, VSIPL)
- Validate SW development productivity of emerging Data Reorganization Interface
- **MITRE and Northrop Grumman**

Embedded **Multicomputers**

Common Imagery

Shared-Memory Servers

Single code base optimized for all high performance architectures provides future flexibility

Commodity Clusters Massively Parallel Processors

Embedded Multicomputers

- CSPI 500MHz PPC7410 (vendor loan)
- Mercury 500MHz PPC7410 (vendor loan)
- Sky 333MHz PPC7400 (vendor loan)
- Sky 500MHz PPC7410 (vendor loan)

Mainstream Servers

- HP/COMPAQ ES40LP 833-MHz Alpha ev6 (CIP hardware)
- HP/COMPAQ ES40 500-MHz Alpha ev6 (CIP hardware)
- SGI Origin 2000 250MHz R10k (CIP hardware)
- SGI Origin 3800 400MHz R12k (ARL MSRC)
- IBM 1.3GHz Power 4 (ARL MSRC)
- Generic LINUX Cluster

MITRF

www.hpec-si.org

Shared Memory / CIP Server versus Distributed Memory / Embedded Vendor

Slide-15 www.hpec-si.org MIT Lincoln Laboratory

AFRI

Form Factor Improvements

• IOP: 6U VME chassis (9 slots potentially available)

• IFP: HP/COMPAQ ES40LP

MITRE

- IOP could support 2 G4 IFPs
 - form factor reduction (x2)
- 6U VME can support 5 G4 IFPs
 - processing capability increase (x2.5)

MIT Lincoln Laboratory

Slide-16 www.hpec-si.org

Slide-17 www.hpec-si.org

- Introduction
- Demonstration
- Development
- Applied Research
- Future Challenges
- Summary

Parallel (||VSIPL++)

Emergence of Component Standards

BLAS zherk Routine

- **BLAS = Basic Linear Algebra Subprograms**
- Hermitian matrix M: conjug(M) = M^t
- zherk performs a rank-k update of Hermitian matrix C: •

 $C \leftarrow \alpha * A * conjug(A)^t + \beta * C$

VSIPL code

```
A = vsip cmcreate d(10,15,VSIP ROW, MEM NONE);
C = vsip cmcreate d(10,10,VSIP ROW,MEM NONE);
tmp = vsip cmcreate d(10,10,VSIP_ROW,MEM_NONE);
vsip cmprodh d(A,A,tmp); /* A*conjug(A)<sup>t</sup> */
vsip rscmmul d(alpha,tmp,tmp);/* α*A*conjug(A)<sup>t</sup> */
vsip rscmmul d(beta,C,C); /* \beta*C */
vsip cmadd d(tmp,C,C); /* \alpha*A*conjug(A)<sup>t</sup> + \beta*C */
vsip cblockdestroy(vsip cmdestroy d(tmp));
vsip cblockdestroy(vsip cmdestroy d(C));
vsip cblockdestroy(vsip cmdestroy d(A));
```

VSIPL++ code (also parallel)

```
Matrix<complex<double> > A(10,15);
Matrix<complex<double> > C(10,10);
```

```
C = alpha * prodh(A,A) + beta * C;
```

- Sonar Example
 K-W Beamformer
- **Converted C VSIPL to** VSIPL++
- 2.5x less SLOCs

MITRE Slide-20 www.hpec-si.org

- Pland coded loop achieves good performance, but is problem specific and low level
- Optimized VSIPL performs well for simple expressions, worse for more complex expressions
- PETE style array operators perform almost as well as the hand-coded loop and are general, can be composed, and are high-level

Software Technology

AltiVec loop	VSIPL (vendor optimized)	PETE with AltiVec
 C For loop Direct use of AltiVec extensions Assumes unit stride Assumes vector alignment 	 C AltiVec aware VSIPro Core Lite (www.mpi-softtech.com) No multiply-add Cannot assume unit stride Cannot assume vector alignment 	 C++ PETE operators Indirect use of AltiVec extensions Assumes unit stride Assumes vector alignment

Parallel Pipeline Mapping

Scalable Approach

Lincoln Parallel Vector Library (PVL)

- Single processor and multi-processor code are the same Maps can be changed without changing software High level code is compact

- Introduction
- Demonstration
- Development
- Applied Research
- Future Challenges
- Summary

- Fault Tolerance
- Parallel Specification
- Hybrid Architectures (see SBR)

Dynamic Mapping for Fault Tolerance

Slide-25 www.hpec-si.org

MIT Lincoln Laboratorv

AFRL

Parallel Specification

- Matlab is the main specification language for signal processing
- pMatlab allows parallel specifications using same mapping constructs being developed for ||VSIPL++

MITRE '

- Introduction
- Demonstration
- Development
- Applied Research
- Future Challenges

Summary

Optimal Mapping of Complex Algorithms

Application

HPEC-SI Future Challenges

Summary

- HPEC-SI Program on track toward changing software practice in DoD HPEC Signal and Image Processing
 - Outside funding obtained for DoD program specific activities (on top of core HPEC-SI effort)
 - 1st Demo completed; 2nd selected
 - Worlds first parallel, object oriented standard
 - Applied research into task/pipeline parallelism; fault tolerance; parallel specification
- Keys to success
 - Program Office Support: 5 Year Time horizon better match to DoD program development
 - Quantitative goals for portability, productivity and performance
 - Engineering community support

www.hpec-si.org

Web Links

High Performance Embedded Computing Workshop http://www.II.mit.edu/HPEC **High Performance Embedded Computing Software Initiative** http://www.hpec-si.org/ Vector, Signal, and Image Processing Library http://www.vsipl.org/ **MPI Software Technologies, Inc.** http://www.mpi-softtech.com/ **Data Reorganization Initiative** http://www.data-re.org/ CodeSourcery, LLC http://www.codesourcery.com/ MatlabMPI http://www.ll.mit.edu/MatlabMPI MIT Lincoln Laboratory MITRE AFRI Slide-31