
Slide-1
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

HPCS Application Analysis
and Assessment

This work is sponsored by the Department of Defense under Air Force Contract F19628-00-C-0002. Opinions,
interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United
States Government.

Dr. Jeremy Kepner / Lincoln
Dr. David Koester / MITRE

Slide-2
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Outline

• Motivation
• Productivity Framework• Introduction

• Workflows

• Metrics

• Models & Benchmarks

• Schedule and Summary

Slide-3
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

High Productivity Computing Systems
-Program Overview-

Create a new generation of economically viable computing systems and a
procurement methodology for the security/industrial community (2007 – 2010)

team

Full Scale
Development

Petascale Systems

2 Vendors

New Evaluation
Framework

Test Evaluation
Framework

team

Validated Procurement
Evaluation Methodology

Advanced
Design &
Prototypes

Concept
Study

Phase 3
(2006-2010)

Phase 1
$20M (2002)

Phase 2
$180M (2003-2005)

Slide-4
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Motivation: Metrics Drive Designs
“You get what you measure”

Execution Time (Example)

Current metrics favor caches and pipelines
• Systems ill-suited to applications with
• Low spatial locality
• Low temporal locality

Top500 Linpack
Rmax

Large FFTs
(Reconnaissance)

StreamsAdd

Table Toy (GUPS)
(Intelligence)

High

High

Low

Low

HPCS

Sp
at

ia
l L

oc
al

ity

Temporal Locality

Adaptive Multi-Physics
Weapons Design
Vehicle Design

Weather Tradeoffs

Development Time (Example)

No metrics widely used
• Least common denominator standards
• Difficult to use
• Difficult to optimize

C/Fortran
MPI/OpenMP

Matlab/
Python

Assembly/
VHDL

High Performance
High Level Languages

Language
Performance

La
ng

ua
ge

Ex
pr

es
si

ve
ne

ss

UPC/CAF

SIMD/
DMA

HPCS

Low

Low

High

High

• HPCS needs a validated assessment methodology that
values the “right” vendor innovations

• Allow tradeoffs between Execution and Development Time

• HPCS needs a validated assessment methodology that
values the “right” vendor innovations

• Allow tradeoffs between Execution and Development Time

Slide-5
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Phase 1: Productivity Framework

Development
Time (cost)

Execution
Time (cost)

Productivity
Metrics

BW bytes/flop (Balance)
Memory latency
Memory size
……..

Productivity

Processor flop/cycle
Processor integer op/cycle
Bisection BW
………
Size (ft3)
Power/rack
Facility operation
……….
Code size
Restart time (Reliability) Code
Optimization time
………

Activity &
Purpose

Benchmarks

Actual
System

or
Model

Work
Flows

(Ratio of Utility/Cost)
C

om
m

on M
odeling Interface

System Parameters
(Examples)

Slide-6
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Phase 2: Implementation

Development
Time (cost)

Execution
Time (cost)

Productivity
Metrics

BW bytes/flop (Balance)
Memory latency
Memory size
……..

Productivity

Processor flop/cycle
Processor integer op/cycle
Bisection BW
………
Size (ft3)
Power/rack
Facility operation
……….
Code size
Restart time (Reliability) Code
Optimization time
………

Activity &
Purpose

Benchmarks

Actual
System

or
Model

Work
Flows

(Ratio of Utility/Cost)
C

om
m

on M
odeling Interface

De
v

In
te

rfa
ce

Ex
e

In
te

rfa
ce

Metrics Analysis of
Current and New Codes

(Lincoln, UMD & Mission Partners)

University Experiments
(MIT, UCSB, UCSD, UMD, USC)

(ANL & Pmodels Group)
(ISI, LLNL& UCSD)

(Mitre, ISI, LBL, Lincoln, HPCMO, LANL & Mission Partners)

Performance Analysis
(ISI, LLNL & UCSD)

(Lincoln, OSU, CodeSourcery) System Parameters
(Examples)

Slide-7
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Outline

• Lone Researcher
• Enterprise
• Production

• Introduction

• Workflows

• Metrics

• Models & Benchmarks

• Schedule and Summary

Slide-8
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

HPCS Mission Work Flows

Decide

Observe

Act

Orient

Production Hours to
Minutes

(Response Time)

Design

Simulation

Visualize

Enterprise

Months
to days

Overall Cycle Development Cycle

Optimize

ScaleTest
Development

Years to
months

Code

Design
Prototyping

Evaluation

Operation
Maintenance

Design

Code

Test

Port, Scale,
Optimize

In
iti

al

D
ev

el
op

m
en

t

Days to
hours

Experiment

Theory
Code

TestDesign
Prototyping

Hours to
minutes

HPCS Productivity Factors: Performance, Programmability,
Portability, and Robustness are very closely coupled with each work flow

HPCS Productivity Factors: Performance, Programmability,
Portability, and Robustness are very closely coupled with each work flow

Researcher

Development

Initial Product
Development

Port Legacy
Software

Port Legacy
Software

Researcher

Production

Execution

Enterprise

Months
to days

Slide-9
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Lone Researcher

• Missions (development): Cryptanalysis, Signal Processing, Weather,
Electromagnetics

• Process Overview
– Goal: solve a compute intensive domain problem: crack a code, incorporate new

physics, refine a simulation, detect a target
– Starting point: inherited software framework (~3,000 lines)
– Modify framework to incorporate new data (~10% of code base)
– Make algorithmic changes (~10% of code base); Test on data; Iterate
– Progressively increase problem size until success
– Deliver: code, test data, algorithm specification

• Environment overview
– Duration: months Team size: 1
– Machines: workstations (some clusters), HPC decreasing
– Languages: FORTRAN, C → Matlab, Python
– Libraries: math (external) and domain (internal)

• Software productivity challenges
– Focus on rapid iteration cycle
– Frameworks/libraries often serial

Theory

Experiment

Lone
Researcher

Slide-10
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Domain Researcher (special case)

• Scientific Research: DoD HPCMP Challenge Problems, NNSA/ASCI Milestone
Simulations

• Process Overview
– Goal: Use HPC to perform Domain Research
– Starting point: Running code, possibly from an Independent Software Vendor (ISV)
– NO modifications to codes
– Repeatedly run the application with user defined optimization

• Environment overview
– Duration: months Team size: 1-5
– Machines: workstations (some clusters), HPC
– Languages: FORTRAN, C
– Libraries: math (external) and domain (internal)

• Software productivity challenges — None!
• Productivity challenges

– Robustness (reliability)
– Performance
– Resource center operability

Visualize

Simulation

Domain
Researcher

Slide-11
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Enterprise Design

• Missions (development): Weapons Simulation, Image Processing

• Process Overview
– Goal: develop or enhance a system for solving a compute intensive domain

problem: incorporate new physics, process a new surveillance sensor
– Starting point: software framework (~100,000 lines) or module (~10,000 lines)
– Define sub-scale problem for initial testing and development
– Make algorithmic changes (~10% of code base); Test on data; Iterate
– Progressively increase problem size until success
– Deliver: code, test data, algorithm specification, iterate with user

• Environment overview
– Duration: ~1 year Team size: 2-20
– Machines: workstations, clusters, hpc
– Languages: FORTRAN, C, → C++, Matlab, Python, IDL
– Libraries: open math and communication libraries

• Software productivity challenges
– Legacy portability essential

 Avoid machine specific optimizations (SIMD, DMA, …)
– Later must convert high level language code

Design

Simulation

Visualize
Enterprise

Design

Port Legacy
Software

Slide-12
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Production

• Missions (production): Cryptanalysis, Sensor Processing, Weather

• Process Overview
– Goal: develop a system for fielded deployment on an HPC system
– Starting point: algorithm specification, test code, test data, development software

framework
– Rewrite test code into development framework; Test on data; Iterate
– Port to HPC; Scale; Optimize (incorporate machine specific features)
– Progressively increase problem size until success
– Deliver: system

• Environment overview
– Duration: ~1 year Team size: 2-20
– Machines: workstations and HPC target
– Languages: FORTRAN, C, → C++

• Software productivity challenges
– Conversion of higher level languages
– Parallelization of serial library functions
– Parallelization of algorithm
– Sizing of HPC target machine

Observe

Act Decide

Orient

Production

Initial Product
Development

Slide-13
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

HPC Workflow SW Technologies
Production Workflow

• Many technologies targeting specific pieces of workflow
• Need to quantify workflows (stages and % time spent)
• Need to measure technology impact on stages

Design, Code, TestAlgorithm
Development Spec Run

SupercomputerWorkstation
Port, Scale, Optimize

Linux RT LinuxOperating
Systems

Compilers

Libraries

Tools

Problem
Solving

Environments

Matlab Java UPC CoarrayC++ F90OpenMP
ATLAS, BLAS,

FFTW, PETE, PAPI
VSIPL

||VSIPL++
CORBA MPI DRI

UML TotalViewGlobus

ESMFCCA POOMA PVL

HPC SoftwareMainstream Software

Slide-14
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Example: Coding vs. Testing

Workflow Breakdown (NASA SEL)
 Analysis Coding Checkout
 and and and
 Design Auditing Test____

Sage 39% 14% 47%

NTDS 30 20 50
__
Gemini 36 17 47
__
Saturn V 32 24 44
__
OS/360 33 17 50
__
TRW Survey 46 20 34

Testing Techniques (UMD)
Code Reading

Reading by Stepwise Abstraction
Functional Testing

Boundary Value Equivalence Partition Testing
Structural Testing

Achieving 100% statement coverage

What is HPC testing process?
Problem Size

Environment Small Medium Full
(Workstation) (Cluster) (HPC)

Prototype (Matlab) X
Serial (C/Fortran) X
Parallel (OpenMP) X X X New Result?

New Bug?

Slide-15
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Outline

• Existing Metrics
• Dev. Time Experiments
• Novel Metrics

• Introduction

• Workflows

• Metrics

• Models & Benchmarks

• Schedule and Summary

Slide-16
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Example Existing Code Analysis

Cray Inc. Proprietary Ğ Not For Public Disclosure

MG Performance

Cray Inc. Proprietary Ğ Not For Public Disclosure

NAS MG Linecounts

0

200

400

600

800

1000

1200

MPI Java HPF OpenMP Serial A-ZPL

comm/sync/dir
declarations
computation

Analysis of existing codes used to test
metrics and identify important trends
in productivity and performance

Analysis of existing codes used to test
metrics and identify important trends
in productivity and performance

Slide-17
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

NPB Implementations

C /
OpenMP

C / MPISerial
C

Languages

SP

MG

LU

IS

FT

EP

CG

BT

JavaHPFFortan /
OpenMP

Fortran /
MPI

Serial
Fortran

Benchmark

Slide-18
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Source Lines of Code (SLOC) for
the NAS Parallel Benchmarks (NPB)

-

500

1,000

1,500

2,000

2,500

3,000

BT CG EP FT IS LU MG SP

Benchmark

SL
O

C

Serial Implementation
(Fortran / C)

Slide-19
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Normalized SLOC for
All Implementations of the NPB

-

0.50

1.00

1.50

2.00

2.50

3.00

BT CG EP FT IS LU MG SP

Benchmark

SL
O

C
(N

or
m

al
iz

ed
 w

.r.
t.

Se
ria

l)

Serial
MPI
OpenMP
HPF
Java

Slide-20
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

NAS FT Performance vs. SLOCs

Fortran / MPI, 16
Processors

Java, 16
Processors

Serial Fortran, 1
Processor0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200 1400 1600

Development Effort (SLOC)

Pe
rf

or
m

an
ce

 (M
op

s)

Slide-21
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Example Experiment Results (N=1)

0

1

10

100

1000

0 200 400 600 800 1000

Matlab

BLAS
/MPI

Single
Processor

Shared
Memory

Distributed
Memory

Matlab C

Pe
rf

or
m

an
ce

 (S
pe

ed
up

 x
 E

ffi
ci

en
cy

)

Development Time (Lines of Code)

C++

BLAS

pMatlab

MatlabMPI

BLAS/
OpenMP

PVL
BLAS
/MPI

Research Current
Practice

• Same application
(image filtering)

• Same programmer
• Different langs/libs

•Matlab
•BLAS
•BLAS/OpenMP
•BLAS/MPI*
•PVL/BLAS/MPI*
•MatlabMPI
•pMatlab*

• Same application
(image filtering)

• Same programmer
• Different langs/libs

•Matlab
•BLAS
•BLAS/OpenMP
•BLAS/MPI*
•PVL/BLAS/MPI*
•MatlabMPI
•pMatlab*

*Estimate

3

2 1

4

6

7 5

Controlled experiments can potentially measure the impact of different
technologies and quantify development time and execution time tradeoffs
Controlled experiments can potentially measure the impact of different
technologies and quantify development time and execution time tradeoffs

Slide-22
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Novel Metrics

• HPC Software Development often involves changing code (∆x)
to change performance (∆y)

– 1st order size metrics measures scale of change E(∆x)
– 2nd order metrics would measure nature of change E(∆x2)

• Example: 2 Point Correlation Function
– Looks at “distance” between code changes
– Determines if changes are localized (good) or distributed (bad)

• Other Zany Metrics
– See Cray talk

Code distance

Correlation
of changes

localized distributed

random

Slide-23
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Outline

• Prototype Models
• A&P Benchmarks

• Introduction

• Workflows

• Metrics

• Models & Benchmarks

• Schedule and Summary

Slide-24
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Prototype Productivity Models

0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0 Matlab

Java

Fortran

Desired Productivity Area

Po
w

er

Efficiency

Special Model with Work Estimator (Sterling)

Least Action (Numrich)

Efficiency and Power
(Kennedy, Koelbel, Schreiber)

hour

day

week

month

year

hour day week month year

Pr
og

ra
m

m
in

g
Ti

m
e

Execution Time

execution
bounded
missions

programming
bounded
missions

Surveillance

Crypt
analysis

Intelligence

Weather
(operational)

Weapons
Design

HPCS Goal

Weather
(research)

Time-To-Solution (Kogge)

x A xEffort
Multipliers Size

Scale
Factors

CoCoMo II
(software engineering

community)

productivity GUPS
 ...
Linpack

≈

useful ops
second()GUPS

 ...
Linpack

Hardware Cost

















productivity
factor



 


 mission

factor


 




Productivity Factor Based (Kepner)

productivity
factor



 


 ≈ Language

Level


 


 × Parallel

Model


 


 × Portability ×

Availability
Maintenance

T(PL) = I(PL) + rE(PL)

= I(P 0) ⋅ I (PL)
I (P 0) + rE(P 0) ⋅ E(PL)

E(P 0)
= I(P 0) /ρL + rE (P 0) /εL

Utility (Snir)
P(S,A,U(.)) = mincos t

U(T(S, A,Cost))
Cost

Ψw =
SP × E × A

cf × Γ × ρ •n(){ }+ cm + co()×T

S = º [wdev + wcomp] dt; δ S = 0

HPCS has triggered ground breaking activity in understanding HPC productivity
-Community focused on quantifiable productivity (potential for broad impact)
-Numerous proposals provide a strong foundation for Phase 2

HPCS has triggered ground breaking activity in understanding HPC productivity
-Community focused on quantifiable productivity (potential for broad impact)
-Numerous proposals provide a strong foundation for Phase 2

Slide-25
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Code Size and Reuse Cost

Code
Size

Measured in lines of code or functions points (converted to lines of code)

= New + +Reused Re-engineered Maintained+
Lines of code
Function Points
Reuse
Re-engineering
Maintenance

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

Measured
(Selby 1988)

Linear
R

el
at

iv
e

C
os

t

Fraction modified
Black
Box

White
BoxSoftware Reuse Cost

• Code size is the most important software
productivity parameter

• Non-HPC world reduces code size by
– Higher level languages
– Reuse

• HPC performance requirements currently
limit the exploitation of these approaches

Lines per function point
C, Fortran ~100
Fortran77 ~100
C++ ~30
Java ~30
Matlab ~10
Python ~10
Spreadsheet ~5

HPC Challenge Areas
Function Points

High productivity languages not available on HPC

Reuse
Nonlinear reuse effects. Performance requirements dictate
“white box” reuse model

Lines per function point
C, Fortran ~100
Fortran77 ~100
C++ ~30
Java ~30
Matlab ~10
Python ~10
Spreadsheet ~5

Slide-26
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Activity & Purpose Benchmarks

Activity & Purpose Benchmark

Data Generation and Validation Accuracy
Data Points

Run

Spec& Test Environment
R

eq
ui

re
m

en
ts

D
at

a

Ex
ec

ut
ab

le
Sp

ec
ifi

ca
tio

n

W
rit

te
n

Sp
ec

ifi
ca

tio
n

Pa
ra

lle
l

Sp
ec

ifi
ca

tio
n

Pa
ra

lle
l

So
ur

ce
 C

od
e

So
ur

ce
 C

od
e

O
ut

pu
t

Standard Interface

Standard Interface Standard Interface

Legend

Purpose

Activity
Level 1

Activity
Level 2

Infrastructure

Design, Code, TestAlgorithm
Development Spec RunPort, Scale, Optimize

Development Workflow

Activity Benchmarks define a set of instructions (i.e., source code) to be executed
Purpose Benchmarks define requirements, inputs and output
Together they address the entire development workflow

Activity Benchmarks define a set of instructions (i.e., source code) to be executed
Purpose Benchmarks define requirements, inputs and output
Together they address the entire development workflow

Slide-27
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

HPCS Phase 1 Example
Kernels and Applications

Mission Area Kernels Application Source

Stockpile Stewardship Random Memory Access UMT2000 ASCI Purple Benchmarks
Unstructured Grids

Eulerian Hydrocode SAGE3D ASCI Purple Benchmarks
Adaptive Mesh

Unstructured Finite
Element Model ALEGRA Sandia National Labs
Adaptive Mesh Refinement

Operational Weather
and Ocean
Forecasting Finite Difference Model NLOM DoD HPCMP TI-03

Army Future Combat
Weapons Systems Finite Difference Model CTH DoD HPCMP TI-03

Adaptive Mesh Refinement

Crashworthiness
Simulations

Multiphysics Nonlinear
Finite Element LS-DYNA Available to Vendors

Other Kernels
Lower / Upper Triangular
Matrix Decomposition LINPACK Available on Web
Conjugate Gradient Solver DoD HPCMP TI-03
QR Decomposition Paper & Pencil for Kernels

1D FFT Paper & Pencil for Kernels
2D FFT Paper & Pencil for Kernels

Table Toy (GUP/s) Paper & Pencil for Kernels
Multiple Precision
Mathematics Paper & Pencil for Kernels
Dynamic Programming Paper & Pencil for Kernels
Matrix Transpose
[Binary manipulation] Paper & Pencil for Kernels
Integer Sort
[With large multiword key] Paper & Pencil for Kernels
Binary Equation Solution Paper & Pencil for Kernels

Graph Extraction
(Breadth First) Search Paper & Pencil for Kernels
Sort a large set Paper & Pencil for Kernels
Construct a relationship
graph based on proximity Paper & Pencil for Kernels

Various Convolutions Paper & Pencil for Kernels
Various Coordinate
Transforms Paper & Pencil for Kernels
Various Block Data Transfers Paper & Pencil for Kernels

Bio-Application Kernels Application Source

Quantum and
Molecular
Mechanics Macromolecular Dynamics CHARMM http://yuri.harvard.edu/

Energy Minimization
MonteCarlo Simulation

Whole Genome
Analysis Sequence Comparison

Needleman-
Wunsch

http://www.med.nyu.edu/
rcr/rcr/course/sim-sw.html

BLAST http://www.ncbi.nlm.nih.gov/BLAST/
FASTA http://www.ebi.ac.uk/fasta33/
HMMR http://hmmer.wustl.edu/

Systems Biology Functional Genomics
BioSpice
(Arkin, 2001)

http://genomics.lbl.gov/~aparkin/
Group/Codebase.html

Biological Pathway Analysis

Set of scope benchmarks
representing Mission Partner

and emerging Bio-Science high-
end computing requirements

Set of scope benchmarks
representing Mission Partner

and emerging Bio-Science high-
end computing requirements

Slide-28
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Outline

• Introduction

• Workflows

• Metrics

• Models & Benchmarks

• Schedule and Summary

Slide-29
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Phase II Productivity Forum
Tasks and Schedule

-Workflow Models
(Lincoln/HPCMO/LANL)

-Dev Time Experiments
(UMD/)

-Dev & Exe Interfaces
(HPC SW/FFRDC)

-A&P Benchmarks
(Missions/FFRDC)

-Unified Model Interface
(HPC Modelers)

-Machine Experiments
(Modelers/Vendors)

-Models & Metrics
(Modelers/Vendors)

Task (Communities) Q3-Q4 Q1-Q2 Q3-Q4 Q1-Q2 Q3-Q4 Q1-Q2 Q3-Q4
FY03 FY05 FY06

Analyze Existing,
Design Exp,

& Pilot Studies

FY04

Data

Data

Intelligence
Weapons Design

Surveillance
Environment

Bioinformatics

Workflows

Controlled
Baseline

Experiments

Mission Specific
& New Technology

Demonstrations

Competing Development Time Models

Existing HPC
Systems

Next Generation
HPC Systems HPCS Designs

Competing Execution Time Models

Reqs & Spec (~6)
& Exe Spec (~2)

Revise &
Exe Spec (~2)

Revise &
Exe Spec (~2)

Prototype
Interfaces (v0.1) (version0.5) (version 1.0)

Prototype
Interface (v0.1) (version 0.5) (version 1.0)

D
ev

el
op

m
en

t
Ex

ec
ut

io
n

Fr
am

ew
or

k

-HPC Productivity
Competitiveness Council

Productivity
Workshops

Productivity
Evaluations

Roll Out
Productivity Metrics

Validated
Dev Time

Assessment
Methodology

Workflows

Validated
Exe Time

Assessment
Methodology

Broad
Commercial
Acceptance

Slide-30
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Summary

• Goal is to develop an acquisition quality framework for HPC
systems that includes

– Development time
– Execution time

• Have assembled a team that will develop models, analyze
existing HPC codes, develop tools and conduct HPC
development time and execution time experiments

• Measures of success
– Acceptance by users, vendors and acquisition community
– Quantitatively explain HPC rules of thumb:

 "OpenMP is easier than MPI, but doesn’t scale a high”
 "UPC/CAF is easier than OpenMP”
 "Matlab is easier the Fortran, but isn’t as fast”

– Predict impact of new technologies

Slide-31
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Backup Slides

Slide-32
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

HPCS Phase II Teams

PIs: Vetter, Lusk, Post, Bailey PIs: Gilbert, Edelman, Ahalt, Mitchell
LCS Ohio

State

Goal:
Develop a procurement quality assessment methodology that will be the basis
of 2010+ HPC procurements

PI: SmithPI: Elnozahy PI: Gustafson
Goal:

Provide a new generation of economically viable high productivity computing
systems for the national security and industrial user community (2007 – 2010)

Industry:

Productivity Team (Lincoln Lead)
MIT Lincoln
Laboratory

PI: Kepner PI: Lucas PI: Basili PI: Benson & Snavely

PI: Koester

Slide-33
HPCS Productivity

MITRE ISIMIT Lincoln Laboratory

Productivity Framework Overview

Value Metrics
•Execution
•Development

Benchmarks
-Activity
•Purpose

Workflows
-Production
-Enterprise
-Researcher

Preliminary
Multilevel
System
Models

&
Prototypes

Final
Multilevel
System
Models

&
SN001

HPCS Vendors

HPCS FFRDC & Gov
R&D Partners

Mission Agencies

Acceptance

Level Tests
Run Evaluation

Experiments

Commercial or Nonprofit

Productivity Sponsor

HPCS needs to develop a procurement quality assessment
methodology that will be the basis of 2010+ HPC procurements

HPCS needs to develop a procurement quality assessment
methodology that will be the basis of 2010+ HPC procurements

Phase I: Define
Framework & Scope
Petascale Requirements

Phase II: Implement
Framework & Perform
Design Assessments

Phase III: Transition
To HPC Procurement
Quality Framework

	HPCS Application Analysisand Assessment
	Outline
	High Productivity Computing Systems
	Motivation: Metrics Drive Designs
	Phase 1: Productivity Framework
	Phase 2: Implementation
	Outline
	HPCS Mission Work Flows
	Lone Researcher
	Domain Researcher (special case)
	Enterprise Design
	Production
	HPC Workflow SW Technologies
	Example: Coding vs. Testing
	Outline
	Example Existing Code Analysis
	NPB Implementations
	Source Lines of Code (SLOC) for the NAS Parallel Benchmarks (NPB)
	Normalized SLOC for All Implementations of the NPB
	NAS FT Performance vs. SLOCs
	Example Experiment Results (N=1)
	Novel Metrics
	Outline
	Prototype Productivity Models
	Code Size and Reuse Cost
	Activity & Purpose Benchmarks
	HPCS Phase 1 ExampleKernels and Applications
	Outline
	Phase II Productivity Forum Tasks and Schedule
	Summary
	Backup Slides
	HPCS Phase II Teams
	Productivity Framework Overview

