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Abstract

The true costs of high performance computing are
currently dominated by software. Addressing these
costs requires shifting to high productivity languages
such as Matlab. The development of MatlabMPI
(www.ll.mit.edu/MatlabMPI) was an important first step
that has brought parallel messaging capabilities to the
Matlab environment, and is now widely used in the com-
munity. The ultimate goal is to move beyond basic mes-
saging (and its inherent programming complexity) to-
wards higher level parallel data structures and functions.
The pMatlab Parallel Toolbox provides these capabili-
ties, and allows any Matlab user to parallelize their pro-
gram by simply changing a few characters in their pro-
gram. The performance has been tested on both shared
and distributed memory parallel computers (e.g. Sun,
SGI, HP, IBM, Linux and MacOSX) on a variety of ap-
plications.

1 Introduction

MATLAB®! is the dominant interpreted programming
language for implementing numerical computations and
is widely used for algorithm development, simulation,
data reduction, testing and system evaluation. The pop-
ularity of Matlab is driven by the high productivity that
is achieved by users because one line of Matlab code can
typically replace ten lines of C or Fortran code. Many
Matlab programs can benefit from faster execution on
a parallel computer, but achieving this goal has been a
significant challenge (see [2] for a reveiw). MatlabMPI
[3, 4, 5] has brought parallel messaging capabilities to
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hundreds of Matlab users and is being installed in sev-
eral HPC centers.

The ultimate goal is to move beyond basic mes-
saging (and its inherent programming complexity) to-
wards higher level parallel data structures and functions.
pMatlab achieves this by combinng operator overloading
(first demonstrated in Matlab*P) with parallel maps (first
demonstrated in Lincoln’s Parallel Vector Library - PVL)
to provide implicit data parallelism and task parallelism.
In addition, pMatlab is built on top of MatlabMPI and
is a “pure” Matlab implementation which runs anywhere
Matlab runs, and on any heterogeneous combination of
computers. pMatlab allows a Matlab user to parallelize
their program by changing a few lines. For example, the
following program is a parallel implementation of a clas-
sic “corner turn” type of calculation commonly used in
signal processing

pMATLAB_ | nit; Ncpus=conm.vars.conmm Si ze; %Ilnitialize
mapX = map([1 Ncpus/2],{},[1: Ncpus/2]) % Map X
mapY = map([ Ncpus/2 1],{}, [ Ncpus/2+1: Ncpus]) % Map Y

X = conpl ex(rand(N, M mapX), rand(N, M mapX)); % Create X
Y = conpl ex(zeros(N, M mapy) ; % Create Y

% Local matrix of coefs.
% Local matrix of weights.

coefs = ...

wei ghts = ...

Y(:,:) = conv2(coefs, X);
Y(:,:) = weights*Y;
pMATLAB_Fi nal i ze; exit;

% Parallel matrix multiply.
% Final i ze pMATLAB and exit.

The above example illustrates several powerful features
of pMatlab: independence of computation and parallel
mapping, “automatic” parallel computation, and data re-
distribution via operator overloading.

2 Performance Results

The vast majority of potential Matlab applications are
“embarrassingly” parallel and require minimal perfor-
mance out of the communication capabilities in pMat-
lab. These applications exploit coarse grain parallelism
and communicate rarely. Figure 1 shows the speedup

% Paral lel filter + corner turn.



obtained on a typical parallel clutter simulation. Never-
the-less, measuring the communication performance is
useful for determining which applications are most suit-
able for pMatlab. pMatlab has been run on several plat-
forms. It has been benchmarked and compared to the
performance of the underlying MatlabMPI upon which it
is built. These results indicate that the overhead of pMat-
lab is minimal (see Figure 2), the primary difference is
in the latency: 70 milliseconds for pMatlab compared to
35 millieseconds for MatlabMPI. Both pMatlab and Mat-
labMPI match the performance of native C MPI [1] for
very large messages.

These results indicate that it is possible to write effec-
tive parallel programs in Matlab with minimal modifica-
tions to the serial Matlab code. In addition, these capa-
bilities can be provided in a library that is written entirely
in Matlab. Ultimately, it is our goal to establish a unified
interface for parallel Matlab that a broad community sup-
ports. We are actively collaborating with Ohio State, UC
Santa Barbara and the MIT Laboratory for Computer Sci-
ence to provide a single Unified Parallel Matlab interface
that is supported by multiple underlying implementations
(e.g. pMatlab and Matlab*P).
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Figure 1: Clutter Simulation Speedup. Parallel perfor-
mance speedup of a radar clutter simulation on a cluster
of workstations.
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Figure 2: pMatlab vs. MatlabMPI Bandwidth. Com-
munication performance on a “Ping Pong” benchmark as
a function of message size on a Linux cluster. pMat-
lab equals underlying MatlabMPI performance at large
message sizes. Primary difference is latency (70 vs. 35
milliseconds).



