Parallel Matlab: The Next Generation

Jeremy Kepner* (kepner@Ill.mit.edu) and Nadya Travinin (nt@ll.mit.edu)
MIT Lincoln Laboratory, Lexington, MA 02420

Abstract

The true costs of high performance computing are
currently dominated by software. Addressing these
costs requires shifting to high productivity languages
such as Matlab. The development of MatlabMPI
(www.ll.mit.edu/MatlabMPI) was an important first step
that has brought parallel messaging capabilities to the
Matlab environment, and is now widely used in the com-
munity. The ultimate goal is to move beyond basic mes-
saging (and its inherent programming complexity) to-
wards higher level parallel data structures and functions.
The pMatlab Parallel Toolbox provides these capabili-
ties, and allows any Matlab user to parallelize their pro-
gram by simply changing a few characters in their pro-
gram. The performance has been tested on both shared
and distributed memory parallel computers (e.g. Sun,
SGI, HP, IBM, Linux and MacOSX) on a variety of ap-
plications.

1 Introduction

MATLAB®! is the dominant interpreted programming
language for implementing numerical computations and
is widely used for algorithm development, simulation,
data reduction, testing and system evaluation. The pop-
ularity of Matlab is driven by the high productivity that
is achieved by users because one line of Matlab code can
typically replace ten lines of C or Fortran code. Many
Matlab programs can benefit from faster execution on
a parallel computer, but achieving this goal has been a
significant challenge (see [2] for a reveiw). MatlabMPI
[3, 4, 5] has brought parallel messaging capabilities to

*This work is sponsored by the High Performance Comput-
ing Modernization Office, under Air Force Contract F19628-00-C-
0002. Opinions, interpretations, conclusions and recommendations
are those of the author and are not necessarily endorsed by the United
States Government

IMATLAB is a registered trademark of The Mathworks, Inc.

hundreds of Matlab users and is being installed in sev-
eral HPC centers.

The ultimate goal is to move beyond basic mes-
saging (and its inherent programming complexity) to-
wards higher level parallel data structures and functions.
pMatlab achieves this by combinng operator overloading
(first demonstrated in Matlab*P) with parallel maps (first
demonstrated in Lincoln’s Parallel Vector Library - PVL)
to provide implicit data parallelism and task parallelism.
In addition, pMatlab is built on top of MatlabMPI and
is a “pure” Matlab implementation which runs anywhere
Matlab runs, and on any heterogeneous combination of
computers. pMatlab allows a Matlab user to parallelize
their program by changing a few lines. For example, the
following program is a parallel implementation of a clas-
sic “corner turn” type of calculation commonly used in
signal processing

pMATLAB_ | nit; Ncpus=conm.vars.conmm Si ze; %Ilnitialize
mapX = map([1 Ncpus/2],{},[1: Ncpus/2]) % Map X
mapY = map([Ncpus/2 1],{}, [Ncpus/2+1: Ncpus]) % Map Y

X = conpl ex(rand(N, M mapX), rand(N, M mapX)); % Create X
Y = conpl ex(zeros(N, M mapy) ; % Create Y

% Local matrix of coefs.
% Local matrix of weights.

coefs = ...

wei ghts = ...

Y(:,:) = conv2(coefs, X);
Y(:,:) = weights*Y;
pMATLAB_Fi nal i ze; exit;

% Parallel matrix multiply.
% Final i ze pMATLAB and exit.

The above example illustrates several powerful features
of pMatlab: independence of computation and parallel
mapping, “automatic” parallel computation, and data re-
distribution via operator overloading.

2 Performance Results

The vast majority of potential Matlab applications are
“embarrassingly” parallel and require minimal perfor-
mance out of the communication capabilities in pMat-
lab. These applications exploit coarse grain parallelism
and communicate rarely. Figure 1 shows the speedup

% Paral lel filter + corner turn.

obtained on a typical parallel clutter simulation. Never-
the-less, measuring the communication performance is
useful for determining which applications are most suit-
able for pMatlab. pMatlab has been run on several plat-
forms. It has been benchmarked and compared to the
performance of the underlying MatlabMPI upon which it
is built. These results indicate that the overhead of pMat-
lab is minimal (see Figure 2), the primary difference is
in the latency: 70 milliseconds for pMatlab compared to
35 millieseconds for MatlabMPI. Both pMatlab and Mat-
labMPI match the performance of native C MPI [1] for
very large messages.

These results indicate that it is possible to write effec-
tive parallel programs in Matlab with minimal modifica-
tions to the serial Matlab code. In addition, these capa-
bilities can be provided in a library that is written entirely
in Matlab. Ultimately, it is our goal to establish a unified
interface for parallel Matlab that a broad community sup-
ports. We are actively collaborating with Ohio State, UC
Santa Barbara and the MIT Laboratory for Computer Sci-
ence to provide a single Unified Parallel Matlab interface
that is supported by multiple underlying implementations
(e.g. pMatlab and Matlab*P).

References
[1] Message Passing Interface (MPI), http://www.mpi-
forum.org/
[2] R. Choy, Parallel matlab survey,

www.mit.edu/~cly/survey.html

[3] J. Kepner, Parallel Programming with MatlabMPI,
HPEC 2001 Workshop

[4] J. Kepner, 300x Matlab, HPEC 2002 Workshop

[5] J. Kepner and S. Ahalt MatlabMPI, submitted to
the Journal of Parallel and Distributed Computing,
www.arxiv.org/abs/astro-ph/0305090

100 |

—Linear
-o—pMatlab

Speedup

1 ' 2 ' 4 ' 8 ' 16
Number of Processors

Figure 1: Clutter Simulation Speedup. Parallel perfor-
mance speedup of a radar clutter simulation on a cluster
of workstations.

1.E+07
m
]
0
B 1LEH06 [------oo-oooeoee e
"% 3
= — MatlabMPI
S -8—pMatlab
% 1 E 0 D e R
(= E
© F
m
1.E+04

2K 8K 32K 128K 512K 2M 8M

Message Size (Bytes)

Figure 2: pMatlab vs. MatlabMPI Bandwidth. Com-
munication performance on a “Ping Pong” benchmark as
a function of message size on a Linux cluster. pMat-
lab equals underlying MatlabMPI performance at large
message sizes. Primary difference is latency (70 vs. 35
milliseconds).

