

Adaptive beamforming using QR in FPGA

Richard Walke, Real-time System Lab Advanced Processing Centre S&E Division

Contents

- 1 Architecture of adaptive beamformer
- 2 FPGA components
 - Digital receiver
 - QR processor for adaptive weight calculation
- 3 Design methodology
- 4 Demonstration overview
- 5 Conclusions

Section 1 Architecture of adaptive beamformer

Architecture of adaptive beamformer Adaptive beamformer

Section 2 FPGA components

FPGA Components Software configurable FIR

FPGA Components Software configurable FIR

- Software programmable parameters include:
 - filter length
 - decimation ratio
 - complex/real arithmetic
 - number of channels
 - time varying filtering (inter & intra-pulse)
- Performance 20-30 GOPS on XC2V6000-5
 <u>100 GOPS on Virtex2 Pro (2003)</u>

FPGA Components Weight calculation using QR

- Building block for a range of adaptive algorithms
 - Sample matrix inversion (SMI)
 - Soft constraints

FPGA Components QR decomposition

FPGA Components Features of QR

- Good numerical properties. Arithmetic choices:
 - CORDIC: shift-add
 - Fixed-point: multiply-add
 - Floating-point: Higher dynamic range, allows algorithms with fewer operations & lower wordlength. Smallest!
- Highly parallel (Givens rotations)
 - Suits FPGA
 - Need to reduce parallelism for many applications!

FPGA Components Obtaining lower-levels of parallelism

FPGA Components Novel mapping of QR

Linear systolic array

FPGA Components FPGA implementation

Number of Ops

XCV3200E-8

139 14-bit FP operators @ 160MHz = 22 GFLOPS

FPGA Components QR processor - main features

Size	Mantissa wordlength	Clock	Utilisation (XC2V6000)				Operations	Power	
1 Boundary 3 Internal	14-bit mantissa	101MHz⁵	Mults	32	22%	23%	6 GFLOPS	2.24W ⁴	
			Rams ³	34	23%				
			LUTS	15K	22%				
			FFs	16K	23%				
1 Boundary 12 Internal	14-bit mantissa	100MHz ²	<mark>82%</mark> 2				20.3 GFLOPS	8W ⁶	
1 Boundary 9 Internal	17-bit mantissa	97MHz	74%				15 GFLOPS	7W ⁶	
Pentium [™] 4 2GHz ¹							4 GFLOPS	70W	×50

- 1 Estimated (based on data from Richard Linderman)
- 2 Estimated (design too large for PC)
- 3 Also depends upon number of inputs
- 4 Obtained via Xpower
- 5 For XC2V6000-5
- 6 Extrapolated

Section 3 Heterogeneous design methodology

Heterogeneous design methodology $GEDAE^{TM}$

Graphically specify system

Heterogeneous design methodology $GEDAE^{TM}$

Graphically specify system
 primitive functions in 'c'

Heterogeneous design methodology $GEDAE^{TM}$

- Graphically specify system
 - primitive functions in 'c'
 - executable specification

Heterogeneous design methodology

- Graphically specify system
 - primitive functions in 'c'
 - executable specification
- Auto-code generation
 - parallel programme
 constructed by GEDAE

Heterogeneous design methodology

- Graphically specify system
 - primitive functions in 'c'
 - executable specification
- Auto-code generation
 - parallel programme
 constructed by GEDAE
- Currently no support for FPGA
 - highly compatible model

Heterogeneous design methodology Core based methodology

- Cores used for key functions
 - FFT, QR, FIR filter ...
 - Build in parallelism (manually)
 - Parameterised

Heterogeneous design methodology Core based methodology

- Cores used for key functions
 - FFT, QR, FIR filter ...
 - Build in parallelism (manually)
 - Parameterised
- Automatically generated system
 - communications inserted

Heterogeneous design methodology Core based methodology

- Cores used for key functions
 - FFT, QR, FIR filter ...
 - Build in parallelism (manually)
 - Parameterised
- Automatically generated system
 communications inserted
- Architectural exploration
 - Compaan gives Matlab NLP to VHDL
 - RTL output in future version

Section 4 Adaptive beamformer demonstration overview

Demonstration overview System mapping

Conclusion

• FPGAs

- Performance dependent upon level of optimisation
- Floating-point is realistic
- 10x compute improvement
- 5 20x power improvement
- Design is main issue
 - Hardware design: High levels of parallelism required
 - Core-based design approaches offer interim solution
 - Architectural synthesis tools are emerging

Acknowledgements

- The project to develop a core-based design methodology is a collaboration between:
 - QinetiQ Ltd
 - poc: rlwalke@qinetiq.com
 - BAE SYSTEMS ATC, Gt Baddow
 - poc: ian.alston@baesystems.com
- Contributions have been made by John McAllister under contract with the Queen's University of Belfast.
- This work was sponsored by the United Kingdom Ministry of Defence Corporate Research Programme.

