
999999-1
XYZ 10/3/02

MIT Lincoln Laboratory

Monolithic Compiler Experiments
Using C++ Expression Templates*

Lenore R. Mullin**
Edward Rutledge

Robert Bond

HPEC 2002
25 September, 2002

Lexington, MA

* This work is sponsored by the Department of Defense, under Air Force Contract F19628-00-C-0002. Opinions, interpretations,
conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense.

** Dr. Mullin participated in this work while on sabbatical leave from the Dept. of Computer Science, University of Albany,
State University of New York, Albany, NY.

MIT Lincoln Laboratory
020723-er-2
KAM 10/3/02

Outline

• Overview
– Motivation
– The Psi Calculus
– Expression Templates

• Implementing the Psi Calculus with Expression Templates
• Experiments
• Future Work and Conclusions

MIT Lincoln Laboratory
020723-er-3
KAM 10/3/02

Motivation: The Mapping Problem

• Math and indexing operations in same
expression

• Framework for design space search
– Rigorous and provably correct
– Extensible to complex architectures

Approach

Mathematics of Arrays

Example: “raising” array
dimensionality

y= conv
intricate math

intricate
memory
accesses
(indexing)

(x)

M
em

or
y

H
ie

ra
rc

hy

Parallelism

Main Memory

L2 Cache

L1 Cache

Map

x: < 0 1 2 … 35 >

Map:

< 3 4 5 >
< 0 1 2 >

< 6 7 8 >
< 9 10 11 >

< 12 13 14 >

< 18 19 20 >
< 21 22 23 >

< 24 25 26 >
< 27 28 29 >

< 30 31 32 >

< 15 16 17 >

< 33 34 35 >

MIT Lincoln Laboratory
020723-er-4
KAM 10/3/02

Basic Idea

PETE
Style
Array

Operations

PETE
Style
Array

Operations

Implementation

Theory

Combining Expression Templates and Psi Calculus yields
an optimal implementation of array operations

Combining Expression Templates and Psi Calculus yields
an optimal implementation of array operations

• Expression Templates
– Efficient high-level

container operations
– C++

• Expression Templates
– Efficient high-level

container operations
– C++

• Psi Calculus
– Array operations that

compose efficiently
– Minimum number of

memory reads/writes

• Psi Calculus
– Array operations that

compose efficiently
– Minimum number of

memory reads/writes

Benefits
• Theory based
• High level API
• Efficient

MIT Lincoln Laboratory
020723-er-5
KAM 10/3/02

Psi Calculus1 Key Concepts

Denotational Normal Form (DNF):
• Minimum number of memory reads/writes for a given

array expression
• Independent of data storage order

• Psi Calculus rules are applied mechanically to produce the DNF, which is
optimal in terms of memory accesses

• The Gamma function is applied to the DNF to produce the ONF, which is
easily translated to an efficient implementation

Gamma function:
Specifies data
storage order

Operational Normal Form (ONF):
• Like DNF, but takes data storage into account
• For 1-d expressions, consists of one or more loops of

the form:
x[i]=y[stride*i+offset], l � i < u

• Easily translated into an efficient implementation

1 L. M. R. Mullin. A Mathematics of Arrays. PhD thesis, Syracuse University, December 1988.

MIT Lincoln Laboratory
020723-er-6
KAM 10/3/02

Some Psi Calculus Operations

Operations

take

drop

rotate

cat

unaryOmega

binaryOmega

reshape

iota

Arguments

Vector A, int N

Vector A, int N

Vector A, int N

Vector A, Vector B

Operation Op, dimension D,
Array A

Operation Op,
Dimension Adim.
Array A, Dimension Bdim,
Array B

Vector A, Vector B

int N

Definition

Forms a Vector of the first N elements of A

Forms a Vector of the last (A.size-N) elements of A

Forms a Vector of the last N elements of A
concatenated to the other elements of A

Forms a Vector that is the concatenation of A and B

Applies unary operator Op to D-dimensional
components of A (like a for all loop)

Applies binary operator Op to Adim-dimensional
components of A and Bdim-dimensional components
of B (like a for all loop)

Reshapes B into an array having A.size dimensions,
where the length in each dimension is given by the
corresponding element of A

Forms a vector of size N, containing values 0 . . N-1

= index permutation = operators = restructuring = index generation

MIT Lincoln Laboratory
020723-er-7
KAM 10/3/02

Convolution: Psi Calculus
Decomposition

Psi Calculus reduces this to DNF with minimum memory accesses Psi Calculus reduces this to DNF with minimum memory accesses

Definition
of

y=conv(h,x)

y[n]= where x has N elements, h has M elements, 0�n<N+M-1, and
x’ is x padded by M-1 zeros on either end

[] []knxkh
M

k

−′∑
−

=

1

0

Algorithm
and

Psi Calculus
Decomposition

Algorithm step Psi Calculus

sum Y=unaryOmega (sum, 1, Prod)

Initial step x= < 1 2 3 4 > h= < 5 6 7 >

rotate x’
(N+M-1) times

x’ rot=binaryOmega(rotate,0,iota(N+M-1), 1 x’)

Form x’ x’=cat(reshape(<k-1>, <0>), cat(x, reshape(<k-1>,<0>)))=

take the “interesting”
part of x’rot

x’ final=binaryOmega(take,0,reshape(<N+M-1>,<M>),1,x’rot)

multiply Prod=binaryOmega (*,1, h,1,x’ final)

x= < 1 2 3 4 > h= < 5 6 7 >

< 0 0 1 . . . 4 0 0 >

x’ rot=
< 0 0 1 2 . . . >
< 0 1 2 3 . . . >
< 1 2 3 4 . . . >

< 7 20 38 . . . >

< 0 0 1 >
< 0 1 2 >
< 1 2 3 >

< 0 0 7 >
< 0 6 14 >
< 5 12 21 >

x’ final=

Prod=

Y=

x’=

MIT Lincoln Laboratory
020723-er-8
KAM 10/3/02

Typical C++ Operator Overloading

temp

B+C temp

temp copy A

Main

Operator +

Operator =

1. Pass B and C
references to
operator +

2. Create temporary
result vector

3. Calculate results,
store in temporary

4.Return copy of
temporary

5. Pass results reference
to operator=

6. Perform assignment

temp copy

temp copy &

Example: A=B+C vector addExample: A=B+C vector add

B&,

C&

Additional Memory Use

Additional Execution Time

• Static memory
• Dynamic memory

(also affects
execution time)

• Cache misses/
page faults

• Time to create a
new vector

• Time to create a
copy of a vector

• Time to destruct
both temporaries

2 temporary vectors created2 temporary vectors created

MIT Lincoln Laboratory
020723-er-9
KAM 10/3/02

C++ Expression Templates and PETE

Parse trees, not vectors, createdParse trees, not vectors, created

Reduced Memory Use

Reduced Execution Time

• Parse tree only
contains references

• Better cache use
• Loop fusion style

optimization
• Compile-time

expression tree
manipulation

PETE: http://www.acl.lanl.gov/pete

• PETE, the Portable Expression Template Engine, is available from the
Advanced Computing Laboratory at Los Alamos National Laboratory

• PETE provides:
– Expression template capability
– Facilities to help navigate and evaluating parse trees

A=B+CA=B+C
BinaryNode<OpAdd, Reference<Vector>,

Reference<Vector > >Expression
Templates

Expression

Expression TypeParse Tree

B+C A

Main

Operator +

Operator =

+

B& C&

1. Pass B and C
references to
operator +

4. Pass expression tree
reference to operator

2. Create expression
parse tree

3. Return expression
parse tree

5. Calculate result and
perform assignment

copy &

copy

B&,

C&

Parse trees, not vectors, createdParse trees, not vectors, created

+

B C

MIT Lincoln Laboratory
020723-er-10
KAM 10/3/02

Outline

• Overview
– Motivation
– The Psi Calculus
– Expression Templates

• Implementing the Psi Calculus with Expression Templates
• Experiments
• Future Work and Conclusions

MIT Lincoln Laboratory
020723-er-11
KAM 10/3/02

Implementing Psi Calculus with
Expression Templates

Example:
A=take(4,drop(3,rev(B)))

B=<1 2 3 4 5 6 7 8 9 10>
A=<7 6 5 4>

1. Form expression tree

take

drop

rev

B

4

3

MIT Lincoln Laboratory
020723-er-12
KAM 10/3/02

Implementing Psi Calculus with
Expression Templates

Example:
A=take(4,drop(3,rev(B)))

B=<1 2 3 4 5 6 7 8 9 10>
A=<7 6 5 4>

1. Form expression tree

2. Add size information

take

drop

rev

B

4

3

Bsize=10

S
iz

e
in

fo

MIT Lincoln Laboratory
020723-er-13
KAM 10/3/02

Implementing Psi Calculus with
Expression Templates

Example:
A=take(4,drop(3,rev(B)))

B=<1 2 3 4 5 6 7 8 9 10>
A=<7 6 5 4>

1. Form expression tree

2. Add size information

take

drop

rev

B

4

3

rev

B

size=10

size=10

S
iz

e
in

fo

MIT Lincoln Laboratory
020723-er-14
KAM 10/3/02

Implementing Psi Calculus with
Expression Templates

Example:
A=take(4,drop(3,rev(B)))

B=<1 2 3 4 5 6 7 8 9 10>
A=<7 6 5 4>

1. Form expression tree

2. Add size information

take

drop

rev

B

4

3

drop

rev

B

3

size=7

size=10

size=10

S
iz

e
in

fo

MIT Lincoln Laboratory
020723-er-15
KAM 10/3/02

Implementing Psi Calculus with
Expression Templates

Example:
A=take(4,drop(3,rev(B)))

B=<1 2 3 4 5 6 7 8 9 10>
A=<7 6 5 4>

1. Form expression tree

2. Add size information

take

drop

rev

B

4

3

take

drop

rev

B

4

3

size=4

size=7

size=10

size=10

S
iz

e
in

fo

MIT Lincoln Laboratory
020723-er-16
KAM 10/3/02

Implementing Psi Calculus with
Expression Templates

Example:
A=take(4,drop(3,rev(B)))

B=<1 2 3 4 5 6 7 8 9 10>
A=<7 6 5 4>

1. Form expression tree

2. Add size information 3. Apply Psi Reduction rules

take

drop

rev

B

4

3

take

drop

rev

B

4

3

size=4

size=7

size=10

size=10 size=10 A[i]=B[i]

S
iz

e
in

fo

R
ed

u
ct

io
n

MIT Lincoln Laboratory
020723-er-17
KAM 10/3/02

Implementing Psi Calculus with
Expression Templates

Example:
A=take(4,drop(3,rev(B)))

B=<1 2 3 4 5 6 7 8 9 10>
A=<7 6 5 4>

1. Form expression tree

2. Add size information 3. Apply Psi Reduction rules

take

drop

rev

B

4

3

take

drop

rev

B

4

3

size=4

size=7

size=10

size=10

size=10 A[i] =B[-i+B.size-1]
=B[-i+9]

size=10 A[i]=B[i]

S
iz

e
in

fo

R
ed

u
ct

io
n

MIT Lincoln Laboratory
020723-er-18
KAM 10/3/02

Implementing Psi Calculus with
Expression Templates

Example:
A=take(4,drop(3,rev(B)))

B=<1 2 3 4 5 6 7 8 9 10>
A=<7 6 5 4>

1. Form expression tree

2. Add size information 3. Apply Psi Reduction rules

take

drop

rev

B

4

3

take

drop

rev

B

4

3

size=4

size=7

size=10

size=10

size=7 A[i] =B[-(i+3)+9]
=B[-i+6]

size=10 A[i] =B[-i+B.size-1]
=B[-i+9]

size=10 A[i]=B[i]

S
iz

e
in

fo

R
ed

u
ct

io
n

MIT Lincoln Laboratory
020723-er-19
KAM 10/3/02

Implementing Psi Calculus with
Expression Templates

Example:
A=take(4,drop(3,rev(B)))

B=<1 2 3 4 5 6 7 8 9 10>
A=<7 6 5 4>

Recall:
Psi Reduction for 1-d arrays
always yields one or more
expressions of the form:

x[i]=y[stride*i+ offset]
l � i < u

1. Form expression tree

2. Add size information 3. Apply Psi Reduction rules

take

drop

rev

B

4

3

take

drop

rev

B

4

3

size=4

size=7

size=10

size=10

size=4 A[i]=B[-i+6]

size=7 A[i] =B[-(i+3)+9]
=B[-i+6]

size=10 A[i] =B[-i+B.size-1]
=B[-i+9]

size=10 A[i]=B[i]

S
iz

e
in

fo

R
ed

u
ct

io
n

MIT Lincoln Laboratory
020723-er-20
KAM 10/3/02

Implementing Psi Calculus with
Expression Templates

Example:
A=take(4,drop(3,rev(B)))

B=<1 2 3 4 5 6 7 8 9 10>
A=<7 6 5 4>

Recall:
Psi Reduction for 1-d arrays
always yields one or more
expressions of the form:

x[i]=y[stride*i+ offset]
l � i < u

1. Form expression tree

2. Add size information 3. Apply Psi Reduction rules

4. Rewrite as sub-expressions with iterators at the
leaves, and loop bounds information at the root

take

drop

rev

B

4

3

take

drop

rev

B

4

3

size=4

size=7

size=10

size=10

size=4
iterator:
offset=6
stride=-1

size=4 A[i]=B[-i+6]

size=7 A[i] =B[-(i+3)+9]
=B[-i+6]

size=10 A[i] =B[-i+B.size-1]
=B[-i+9]

size=10 A[i]=B[i]

S
iz

e
in

fo

R
ed

u
ct

io
n

• Iterators used for efficiency, rather than
recalculating indices for each i

• One “for” loop to evaluate each
sub-expression

MIT Lincoln Laboratory
020723-er-21
KAM 10/3/02

Outline

• Overview
– Motivation
– The PSI Calculus
– Expression Templates

• Implementing the Psi Calculus with Expression Templates
• Experiments
• Future Work and Conclusions

MIT Lincoln Laboratory
020723-er-22
KAM 10/3/02

Experiments

Results

• Loop implementation achieves
good performance, but is
problem specific and low level

• Traditional C++ operator
implementation is general and
high level, but performs poorly
when composing many
operations

• PETE/Psi array operators
perform almost as well as the
loop implementation, compose
well, are general, and are high
level

Convolution
(Projected)

Execution Time Normalized to Loop Implementation
(vector size = 1024)

Test ability to compose operations

A=rev(B)

A=rev(take(N,

drop(M,rev(B))))

A=cat(B+C,D+E)

MIT Lincoln Laboratory
020723-er-23
KAM 10/3/02

Experimental Platform and Method

Hardware
• DY4 CHAMP-AV Board

– Contains 4 MPC7400’s and 1 MPC 8420
• MPC7400 (G4)

– 450 MHz
– 32 KB L1 data cache
– 2 MB L2 cache
– 64 MB memory/processor

Software
• VxWorks 5.2

– Real-time OS

• GCC 2.95.4 (non-official release)
– GCC 2.95.3 with patches for

VxWorks
– Optimization flags:

-O3 -funroll-loops -fstrict-aliasing

Method
• Run many iterations, report

average, minimum, maximum time
– From 10,000,000 iterations for

small data sizes, to 1000 for large
data sizes

• All approaches run on same data
• Only average times shown here
• Only one G4 processor used

• Use of the VxWorks OS resulted in very low variability in timing
• High degree of confidence in results

• Use of the VxWorks OS resulted in very low variability in timing
• High degree of confidence in results

MIT Lincoln Laboratory
020723-er-24
KAM 10/3/02

Experiment 1:
A=rev(B)

• PETE/Psi implementation performs nearly as well as hand coded loop,
and much better than regular C++ implementation

• Some overhead associated with expression tree manipulation

• PETE/Psi implementation performs nearly as well as hand coded loop,
and much better than regular C++ implementation

• Some overhead associated with expression tree manipulation

MIT Lincoln Laboratory
020723-er-25
KAM 10/3/02

Experiment 2:
a=rev(take(N,drop(M,rev(b)))

• Larger gap between regular C++ performance and performance of other
implementations àà regular C++ operators do not compose efficiently

• Larger overhead associated with expression-tree manipulation due to
more complex expression

• Larger gap between regular C++ performance and performance of other
implementations àà regular C++ operators do not compose efficiently

• Larger overhead associated with expression-tree manipulation due to
more complex expression

MIT Lincoln Laboratory
020723-er-26
KAM 10/3/02

Experiment 3:
a=cat(b+c, d+e)

• Still larger overhead associated with tree manipulation due to cat()
• Overhead can be mitigated by “setup” step prior to assignment

• Still larger overhead associated with tree manipulation due to cat()
• Overhead can be mitigated by “setup” step prior to assignment

MIT Lincoln Laboratory
020723-er-27
KAM 10/3/02

Outline

• Overview
– Motivation
– The PSI Calculus
– Expression Templates

• Implementing the PSI Calculus with Expression Templates
• Experiments
• Future Work and Conclusions

MIT Lincoln Laboratory
020723-er-28
KAM 10/3/02

Future Work

• Multiple Dimensions: Extend this work to N-dimensional arrays
(N is any non-negative integer)

• Parallelism: Explore dimension lifting to exploit multiple
processors

• Memory Hierarchy: Explore dimension lifting to exploit levels of
memory

• Mechanize Index Decomposition: Currently a time consuming
process done by hand

• Program Block Optimizations: PETE-style optimizations
across statements to eliminate unnecessary temporaries

MIT Lincoln Laboratory
020723-er-29
KAM 10/3/02

Conclusions

• Psi calculus provides rules to reduce array expressions to
the minimum of number of reads and writes

• Expression templates provide the ability to perform
compiler preprocessor-style optimizations (expression tree
manipulation)

• Combining Psi calculus with expression templates results
in array operators that

– Compose efficiently
– Are high performance
– Are high level

• The C++ template mechanism can be applied to a wide
variety of problems (e.g. tree traversal ala PETE, graph
traversal, list traversal) to gain run-time speedup at the
expense of compile time/space

