# Monolithic Compiler Experiments Using C++ Expression Templates* 

Lenore R. Mullin** Edward Rutledge<br>Robert Bond

HPEC 2002
25 September, 2002
Lexington, MA

* This work is sponsored by the Department of Defense, under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense.


## MIT Lincoln Laboratory

** Dr. Mullin participated in this work while on sabbatical leave from the Dept. of Computer Science, University of Albany, State University of New York, Albany, NY.

## Outline

$\Rightarrow$ - Overview

- Motivation
- The Psi Calculus
- Expression Templates
- Implementing the Psi Calculus with Expression Templates
- Experiments
- Future Work and Conclusions


## Motivation: The Mapping Problem



## Basic Idea

- Expression Templates
- Efficient high-level container operations
- C++
- Psi Calculus
- Array operations that compose efficiently
- Minimum number of memory reads/writes


## Benefits

- Theory based
- High level API
- Efficient

Implementation

Theory

PETE
Style
Array
Operations

Combining Expression Templates and Psi Calculus yields an optimal implementation of array operations

## Psi Calculus ${ }^{1}$ Key Concepts

## Denotational Normal Form (DNF):

- Minimum number of memory reads/writes for a given array expression
- Independent of data storage order

Operational Normal Form (ONF):

- Like DNF, but takes data storage into account
- For 1-d expressions, consists of one or more loops of the form:
$\mathrm{x}[i]=\mathrm{y}\left[\right.$ stride ${ }^{*} i+$ offset], $l \quad i<\mathrm{u}$
- Easily translated into an efficient implementation

[^0]
## Some Psi Calculus Operations

| Operations | Arguments | Definition |
| :---: | :---: | :--- |
| take | Vector A, int N | Forms a Vector of the first N elements of A |
| drop | Vector A, int N | Forms a Vector of the last (A.size-N) elements of A |
| rotate | Vector A, int N | Forms a Vector of the last N elements of A <br> concatenated to the other elements of A |
| cat | Vector A, Vector B | Forms a Vector that is the concatenation of A and B |
| unaryOmega | Operation Op, dimension D, <br> Array A | Applies unary operator Op to D-dimensional <br> components of A (like a for all loop) |
| binaryOmega | Operation Op, <br> Dimension Adim. <br> Array A, Dimension Bdim, <br> Array B | Applies binary operator Op to Adim-dimensional <br> components of A and Bdim-dimensional components <br> of B (like a for all loop) |
| reshape | Vector A, Vector B <br> Reshapes B into an array having A.size dimensions, |  |
| iota | where the length in each dimension is given by the <br> corresponding element of A |  |
| int N | Forms a vector of size N, containing values O . N-1 |  |= index permutation

}= operators= restructuring= index generation

## Convolution: Psi Calculus Decomposition

| $\begin{aligned} & \text { Definition } \\ & \quad \text { of } \\ & y=\operatorname{conv}(h, x) \end{aligned}$ | $\mathbf{y}[\mathbf{n}]=\sum_{k=0}^{M-1} h[k] x^{\prime}[n-k]$ | where $x$ has $N$ elements, $h$ has $M$ elements, $0 \quad n<N+M-1$, and $x$ ' is $x$ padded by $M-1$ zeros on either end |  |
| :---: | :---: | :---: | :---: |
| Algorithm and Psi Calculus Decomposition | Algorithm step | Psi Calculus |  |
|  | Initial step | $\mathrm{x}=\langle 1234>\mathrm{h}=\langle 567$ ¢ | $\mathrm{x}=\langle 1234\rangle \mathrm{h}=\langle 567$ ¢ |
|  | Form ${ }^{\text {' }}$ | $\mathrm{x}^{\prime}=\operatorname{cat}($ reshape( $<k-1>,<0>$ ), cat( x , reshape( $\langle k-1>,<0>$ ) ) $=$ | $x^{\prime}=\langle 001 \ldots 400\rangle$ |
|  | rotate $x^{\prime}$ ( $\mathrm{N}+\mathrm{M}-1$ ) times | $\mathrm{x}^{\prime}$ rot $^{=}=$binaryOmega(rotate, 0, iota( $\left.\mathrm{N}+\mathrm{M}-1\right), 1 \mathrm{x}^{\prime}$ ) |  |
|  | take the "interesting" part of $\mathbf{X}_{\text {rot }}^{\prime}$ | $x^{\prime}{ }_{\text {final }}=$ binaryOmega(take, 0, reshape $\left.(<N+M-1>,<M>), 1, x^{\prime}{ }_{\text {rot }}\right)$ |  |
|  | multiply | Prod=binaryOmega ( ${ }^{*}, \mathbf{1}, \mathrm{~h}, \mathbf{1 , \mathbf { x } ^ { \prime } \text { final } )}$ | $\text { Prod } \left.=\begin{array}{ccc} \langle 0 & 0 & 0 \\ 0 & 0 & 7 \end{array}\right\rangle$ |
|  | sum | Y=unaryOmega (sum, 1, Prod) | $\mathrm{Y}=<72038 \ldots$ |

## Psi Calculus reduces this to DNF with minimum memory accesses

## Typical C++ Operator Overloading

## Example: $\mathrm{A}=\mathrm{B}+\mathrm{C}$ vector add



## C++ Expression Templates and PETE

|  |  | Parse Tree | Expression Type |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Expression } \\ & \hline \mathrm{A}=\mathrm{B}+\mathrm{C} \end{aligned}$ | $\underset{\substack{\text { Expression } \\ \text { Templates }}}{\text { ces }}$ |  | BinaryNode<OpAdd, Reference<Vector>, Reference<Vector \gg |



- PETE, the Portable Expression Template Engine, is available from the Advanced Computing Laboratory at Los Alamos National Laboratory
- PETE provides:
- Expression template capability
-Facilities to help navigate and evaluating parse trees


## Outline

- Overview
- Motivation
- The Psi Calculus
- Expression Templates
- Implementing the Psi Calculus with Expression Templates
- Experiments
- Future Work and Conclusions


## Implementing Psi Calculus with Expression Templates

Example:<br>A=take(4,drop(3,rev(B)))<br>$B=<123456789$ 10> A=<7654>



## Implementing Psi Calculus with Expression Templates



## Outline

- Overview
- Motivation
- The PSI Calculus
- Expression Templates
- Implementing the Psi Calculus with Expression Templates
$\Rightarrow$ • Experiments
- Future Work and Conclusions


## Experiments

## Results

- Loop implementation achieves good performance, but is problem specific and low level
- Traditional C++ operator implementation is general and high level, but performs poorly when composing many operations
- PETE/Psi array operators perform almost as well as the loop implementation, compose well, are general, and are high level

Execution Time Normalized to Loop Implementation


Test ability to compose operations

## Experimental Platform and Method

Hardware

- DY4 CHAMP-AV Board
- Contains 4 MPC7400's and 1 MPC 8420
- MPC7400 (G4)
- $\quad 450 \mathrm{MHz}$
- $\quad 32 \mathrm{~KB}$ L1 data cache
- 2 MB L2 cache
- 64 MB memory/processor


## Software

- VxWorks 5.2
- Real-time OS
- GCC 2.95 .4 (non-official release)
- GCC 2.95 .3 with patches for VxWorks
- Optimization flags:
-O3 -funroll-loops -fstrict-aliasing


Method

- Run many iterations, report average, minimum, maximum time
- From 10,000,000 iterations for small data sizes, to 1000 for large data sizes
- All approaches run on same data
- Only average times shown here
- Only one G4 processor used
- Use of the VxWorks OS resulted in very low variability in timing
- High degree of confidence in results


## Experiment 1: <br> $A=r e v(B)$




- PETE/Psi implementation performs nearly as well as hand coded loop, and much better than regular C++ implementation
- Some overhead associated with expression tree manipulation


## Experiment 2: $a=r e v(t a k e(N, \operatorname{drop}(M, r e v(b)))$




- Larger gap between regular C++ performance and performance of other implementations $\rightarrow$ regular C++ operators do not compose efficiently
- Larger overhead associated with expression-tree manipulation due to more complex expression


## Experiment 3: $a=\operatorname{cat}(b+c, d+e)$




- Still larger overhead associated with tree manipulation due to cat()
- Overhead can be mitigated by "setup" step prior to assignment


## Outline

- Overview
- Motivation
- The PSI Calculus
- Expression Templates
- Implementing the PSI Calculus with Expression Templates
- Experiments
$\square$ •Future Work and Conclusions


## Future Work

- Multiple Dimensions: Extend this work to N-dimensional arrays ( N is any non-negative integer)
- Parallelism: Explore dimension lifting to exploit multiple processors
- Memory Hierarchy: Explore dimension lifting to exploit levels of memory
- Mechanize Index Decomposition: Currently a time consuming process done by hand
- Program Block Optimizations: PETE-style optimizations across statements to eliminate unnecessary temporaries


## Conclusions

- Psi calculus provides rules to reduce array expressions to the minimum of number of reads and writes
- Expression templates provide the ability to perform compiler preprocessor-style optimizations (expression tree manipulation)
- Combining Psi calculus with expression templates results in array operators that
- Compose efficiently
- Are high performance
- Are high level
- The C++ template mechanism can be applied to a wide variety of problems (e.g. tree traversal ala PETE, graph traversal, list traversal) to gain run-time speedup at the expense of compile time/space


[^0]:    - Psi Calculus rules are applied mechanically to produce the DNF, which is optimal in terms of memory accesses
    - The Gamma function is applied to the DNF to produce the ONF, which is easily translated to an efficient implementation

