
r e s e r voir a b s HPEC 2002

Streaming and Dynamic Compilers for High
Performance Embedded Computing

Peter Mattson, Jonathan Springer,
Charles Garrett, Richard Lethin

Reservoir Labs, Inc.

r e s e r voir a b s HPEC 2002

Outline

• Streaming Languages for HPEC / Polymorphic Computer
Architectures (PCA).

– Mapping challenges

– R-Stream™ compiler for StreamC and KernelC

– Streaming Language Design Choices

– Thoughts on Mapping

• Dynamic Compilation
– PCA objectives that dynamic compilation helps meet

– Runtime Compilation Issues/Technologies

– Example of How Dynamic Compilation Helps with Component Selection

– Insertion of New Code into Running Systems
– Approaches for using Dynamic Compilation Reliably

r e s e r voir a b s HPEC 2002

Polymorphic (PCA) Architectures

ALU Cluster

ALU Cluster

Stream
Register

File

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

SIMD
Control

SDRAM

SDRAM

SDRAM

SDRAM

IMAGINE (Stanford: Rixner et. al., 1998)
High arithmetic/memory ratio

Parallelism

Less control logic

Synchrony

Programmable

Exposed resources

Other Examples: RAW (MIT), VIRAM (Berkeley), Smart Memories (Stanford)

Programming and Mapping
Challenge

r e s e r voir a b s HPEC 2002

Imagine Performance (Dally et. al 2002)

7.4 us per 1,024-point floating
point complex FFT

6.9 GFLOPsFFT

1.5us per row of 320 16-bit
pixels

25.6 GOPS (16-bit)7x7 Convolution

34.8 ns per 8x8 block (16-bit)22.6 GOPS (16-bit)Discrete Cosine Transformation

Kernels

16.3M pixels/second

11.1M vertices/second

4.64 GOPS (fp and integer)Polygon Rendering with Real-
Time Shading Language

35.6 fps for 720x720 “ADVS”
benchmark

5.91 GOPS (fp and integer)Polygon Rendering

192x92 matrix decompositions
in 1.44 ms

10.46 GFLOPSQR Decomposition

320x288 24-bit color at 287 fps15.35 GOPS (16- and 8-bit)MPEG-2 Encoding

320x240 8-bit gray scale11.92 GOPS (16-bit)Stereo Depth Extraction

Applications

Application PerformanceArithmetic Bandwidth

(6 ALUs * 8 PES * 400 MHz = 19.2 GOPS (peak), 0.18um, 2.56cm^2,)

r e s e r voir a b s HPEC 2002

Compiler Mapping Challenges

Mapping Requirements
Identify Parallelism
Partition Program
Select Operators
Place data
Layout data
Place computation
Schedule computation

Resources
Parallel functional units
Parallel tiles
Distributed memories
Local bypass wires
Inter-tile wires

Constraints
Functional unit availability
Distributed register files
Small bounded memories
Small or no queues
Partial interconnect

Increasing the arithmetic/memory ratio while holding silicon area fixed
simultaneously increases resources and tightens constraints.

èè Automatic compilation MUCH harder
èè Place some burden on programmer and invest in compilers
èè Introduce new languages to assist programmer

r e s e r voir a b s HPEC 2002

KernelC / StreamC Languages (Stanford: Mattson 2001)

Make High Level Dataflow and Low Level Parallelism Explicit

KernelC Example

kernel SAXPY(
istream<float> x_s,
istream<float> y_s,
ostream<float> result_s,
float a)

{
loop_stream(x_s) {

float x, y, result;
x_s >> x;
y_s >> y;
result = a * x + y;
result_s << result;

}
}

StreamC Example

streamprog testSAXPY (String args) {
const int testSize = 128;
stream<float> x_s(testSize);
stream<float> y_s(testSize);
stream<float> result_s(testSize * 2);
stream<float> evenResult_s =

result_s(0, testSize, STRIDE, 2);
stream<float> oddResult_s =

result_s(1, testSize, STRIDE, 2);
// initialize x_s and y_s
...
// compute
SAXPY(x_s, y_s, evenResult_s, 3.4);
SAXPY(x_s, y_s, oddResult_s, 6.7);
...

}

r e s e r voir a b s HPEC 2002

R-Stream™: Compiling KernelC and StreamC

Compiling KernelC
•Replicate kernel across clusters
for SIMD control.
•Generate conditional stream IO
operations for data-driven
dynamic behavior.
•Modulo-schedule the kernel to get
a tight loop.
•Explicitly manage communication
resource.

èè Output is Imagine SIMD
control program.

Compiling StreamC
•Inline/flatten program into Kernel
call sequence.
•Constant propagate so strip size is
explicit.
•Allocate Stream Register File (Local
Memory) with a Process like Register
Allocation.

èè Output is C++ program for
Imagine controller, that
generates stream initiators and
synchronization calls.

R-Stream™ can address the mapping challenge
posed by these new architectures.

r e s e r voir a b s HPEC 2002

StreamC and KernelC Language: Observations

• Emphasis is on letting programmer express partitioning and parallelism.
KernelC is like a new assembly language (e.g., modulo scheduling now moves
to the assembler.) The major development challenges for compilation –
determining partitioning and mapping - are at the level of the StreamC
compiler.

• Nevertheless, there is interaction between StreamC and KernelC compilers
which leads to some hand-holding by the programmer of the compiler. Some
of this is due to architectural problems (e.g., spilling scratch registers) and
some is unavoidable phase interaction. Should they be fused?

• C++ syntax: with special templates and libraries can be compiled by a generic
C++ (e.g., Microsoft Visual C++) compiler for code development.

• Expression of conditional stream IO operations allows data-dependent data
motion, and maps directly to special hardware on Imagine or can be
synthesized with software operations (Kapasi et. al. 2000).

r e s e r voir a b s HPEC 2002

Streaming Language Design Choices

Imperative (e.g. StreamC, Brook [Stanford])
kernel1(…, streamB);
kernel2(streamB, …);
Easy to represent state, control-flow, finite streams
Good for describing array-based algorithms
(stride)
Probably map well to conventional DSP

Dataflow (e.g. StreamIt [MIT], Streams-C [LANL])
kernel1.output1.connect(streamB);
kernel2.input1.connect(streamB);
go();
Easy to represent task parallelism, infinite streams
Good for describing continuously-running systems

The history of streaming
languages is long.

These programs could be
transformed, easily, into
FORTRAN

Challenge is how to map!

This gets much harder
with dynamic behavior.

There are other things we
might need to express,
(e.g., flexibility in ordering
semantics, periodic
invocation,) which arise
from nature of embedded
systems (Lee 2002)

r e s e r voir a b s HPEC 2002

Thoughts on Mapping

• Key technologies for compilation for PCA:
– Optimizations that incorporate constraints of small bounded memories.
– Optimizations that incorporate communications bandwidth constraints.

– Optimizations that incorporate non-traditional objectives (e.g., latency,
power).

• Probably:
– Will see increasing fusion of compiler phases to allow fine-grained

tradeoffs between parallelism and storage use.

– More and more, see compilation implemented as search/solvers over
constraint systems.

– New program intermediate representations forms, such as Array-SSA
(Knobe 1998) or PDG will invigorate development of these key
technologies.

r e s e r voir a b s HPEC 2002

Handling Dynamic Behavior Looks Difficult

Dynamic Behaviors
•Data-dependent iteration
counts, strides, access patterns.
•Conditionals within loops.
•Task parallelism.
•External dynamic conditions:
mission changes, problem
arrival, etc.
•Resource changes (hardware
failures).
•Changes to application (e.g.,
dynamic component
replacement).
•Morphing.

Characterize by:
Size of change
Time constant of change
Space of configurations

Use existing technologies and tricks
for parallel dynamic load balancing,
throttling, mapping, scheduling …
But with the additional challenge of
greater degrees of parallelism and
more severe resource constraints.

If finding a static mapping for
PCA hardware is so hard, how
can we expect to achieve the
same result with an online,
distributed, and low-overhead
mapper?

r e s e r voir a b s HPEC 2002

Dynamic Compilation: Can it Apply to HPEC?

Runtime recompilation and insertion of
new code into running systems.

Changing mission parameters,
objectives, and system resources at
runtime.

Java virtual machine.Desire for a morphware “virtual
machine”

Cross-module optimization at runtime
simultaneously with class loading.

Runtime assembly and selection of
library components.

Runtime profiling and profile-driven
optimization.

Mission parameters (#targets, etc.)
unknown until runtime.

Optimization at mission initiation.Hardware unknown until mission (e.g.,
failures, other resident apps).

Dynamic Compilation Capabilities
(as demonstrated by R-JIT™ for Java)

PCA Technology Program Objective
Subset

r e s e r voir a b s HPEC 2002

Runtime Compilation Issues / Technologies

• How can a compiler be made fast & resource-efficient enough to work
effectively at runtime?

– Efficient data-structures and IR.
– Integrated optimizations: do multiple mapping and optimization tasks in

the same phase, limit phase iterations.
– Apply optimization selectively to high-priority sections.
– Sequence from light to heavy optimization based on priority.

• Nevertheless, heavy parallelism and constraint nature of PCA
architectures presents a new level of compilation challenge to perform
at runtime.

– Optimizing application might take hours or more (e.g., solving complex
constraint system using integer programming).

– We can start by apply the Java strategies to these new compiler problems
• E.g., achieve variation in optimization intensity for modulo scheduling by

searching first for schedules in looser initiation intervals.

– New approaches
• E.g., pre-analyzed or partially compiled code “finished” at runtime.

r e s e r voir a b s HPEC 2002

Dynamic Component Selection: Two Possible Approaches

Component Assemblies

•Collections of precompiled
components (different
problem sizes, algorithms).

•Decorated with meta-
information (XML) or
selection control scripts.

•Loader mediates meta-
information and constraints
to select component.

Object-Oriented Approach (Java/CLOS)
•Component selection is handler selection.
•Loader and compiler tightly integrated.
•Express meta-information within the
application in the application language.
•Static conditions at call site inferred from
program context.
•Dynamic conditions at call site handled
using runtime code generation (e.g., profile-
motivated speculation and generation of
call-site predicates).
•Expression within programming language
allows seamless inter-module analysis and
optimization.

The object-oriented and dynamic compilation
approach has structured and tested ways of
handling this. Advantages in engineering
economy, simplicity, and reliability.

r e s e r voir a b s HPEC 2002

Insertion of New Code into Running Systems

• The challenge of dynamic class loading in Java, and how to
implement:

– Class hierarchy in a Java application is not static.

– For competitive performance, JIT must perform inter-module optimizations
using the speculation that class hierarchy is static.

– The action of a dynamic class load invalidates that speculation.

– How to transform in-progress invocations (thread queue, call stack?)
• How do we transfer PC?
• How do we transform optimized state?

– One approach (Sun’s Hotspot) is dynamic decompilation facility.
• Hairy, slow, complex semantics. How to validate?

– Reservoir’s approach: pseudo-conditionals and simple code-rewriting.

• These technologies can apply to PCA
– To “morph” to pre-compiled configurations over small mission sets.

– To generate “sockets” for morphs to runtime generated configurations for
large or open mission sets.

r e s e r voir a b s HPEC 2002

Reliability of Dynamic Compilation

Concerns about reliability are
justifiable:

•The complexity of
dynamic compiler
transformations exceed
the complexity of modern
dynamic instruction issue
hardware.
•In practice, Reservoir
has found that other
leading commercial
release JVMs fail to pass
our random Java test
suite (R-JVV™).

Reservoir’s Approach to Dynamic
Compilation Testing
•Intense application of randomly generated
tests.
•IR maintenance of extra information to
detect optimization failures, with graceful
recovery.
•Coverage analysis increases proportion of
compiler that is exercised.
•Limit deployment to a single application.

èè Reservoir’s mainframe system R-DYN™
deployment with only one bug found in 4
years (Bank 2001)

Still, much R&D required specifically in compiler validation:
e.g., Model-driven testing, compiler specification checking, proof-
carrying code.

r e s e r voir a b s HPEC 2002

Summary

• New programmable DSP architectures can achieve performance near
fixed function hardware (e.g. Imagine, 20 GOPS).

• ... but introduce major compiler challenges!

• New streaming languages can help.

• Automated mapping for multiple cores/distributed memories is critical
research area.

• Advancing automatic mapping technology for dynamic compilation
has the potential to solve other important problems.

r e s e r voir a b s HPEC 2002

References

• Bank et. al. 2001 “Dynamic Optimization in the Mainframe World”
FDDO-4.

• Dally et. al. 2002: Stanford’s Imagine Web Site:
http://cva.stanford.edu/imagine/project/im_perf.html

• Kapasi et. al. 2000 “Efficient Conditional Operations for Data-parallel
Architectures” MICRO-33.

• Knobe, Sarkar 1998 “Array SSA form and its use in Parallelization”,
SOSP.

• Lee 2002 “Embedded Software” To appear in Advances in Computers
(M. Zelkowitz, editor), Vol. 56, Academic Press, London.

• Mattson 2001 “A Programming System for the Imagine Media
Processor” Stanford Ph.D. Thesis.

• Rixner et. al. 1998 “A Bandwidth-Efficient Architecture for Media
Processing” ISCA-31.

© 2002 Reservoir Labs, Inc.

