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Outline

• Streaming Languages for HPEC / Polymorphic Computer 
Architectures (PCA).

– Mapping challenges

– R-Stream™ compiler for StreamC and KernelC

– Streaming Language Design Choices

– Thoughts on Mapping

• Dynamic Compilation
– PCA objectives that dynamic compilation helps meet

– Runtime Compilation Issues/Technologies

– Example of How Dynamic Compilation Helps with Component Selection

– Insertion of New Code into Running Systems
– Approaches for using Dynamic Compilation Reliably
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Polymorphic (PCA) Architectures
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ALU Cluster

Stream
Register

File

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

SIMD
Control

SDRAM

SDRAM

SDRAM

SDRAM

IMAGINE (Stanford: Rixner et. al., 1998)
High arithmetic/memory ratio

Parallelism

Less control logic

Synchrony

Programmable

Exposed resources

Other Examples: RAW (MIT), VIRAM (Berkeley), Smart Memories (Stanford)

Programming and Mapping 
Challenge
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Imagine Performance (Dally et. al 2002)

7.4 us per 1,024-point floating 
point complex FFT

6.9 GFLOPsFFT

1.5us per row of 320 16-bit 
pixels

25.6 GOPS (16-bit)7x7 Convolution

34.8 ns per 8x8 block (16-bit)22.6 GOPS (16-bit)Discrete Cosine Transformation

Kernels

16.3M pixels/second

11.1M vertices/second

4.64 GOPS (fp and integer)Polygon Rendering with Real-
Time Shading Language

35.6 fps for 720x720 “ADVS” 
benchmark

5.91 GOPS (fp and integer)Polygon Rendering

192x92 matrix decompositions 
in 1.44 ms

10.46 GFLOPSQR Decomposition

320x288 24-bit color at 287 fps15.35 GOPS (16- and 8-bit)MPEG-2 Encoding

320x240 8-bit gray scale11.92 GOPS (16-bit)Stereo Depth Extraction

Applications

Application PerformanceArithmetic Bandwidth

(6 ALUs * 8 PES * 400 MHz = 19.2 GOPS (peak), 0.18um, 2.56cm^2,)
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Compiler Mapping Challenges

Mapping Requirements
Identify Parallelism
Partition Program
Select Operators
Place data
Layout data
Place computation
Schedule computation

Resources
Parallel functional units
Parallel tiles
Distributed memories
Local bypass wires
Inter-tile wires

Constraints
Functional unit availability
Distributed register files
Small bounded memories
Small or no queues
Partial interconnect

Increasing the arithmetic/memory ratio while holding silicon area fixed 
simultaneously increases resources and tightens constraints. 

èè Automatic compilation MUCH harder
èè Place some burden on programmer and invest in compilers
èè Introduce new languages to assist programmer
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KernelC / StreamC Languages (Stanford: Mattson 2001)

Make High Level Dataflow and Low Level Parallelism Explicit

KernelC Example

kernel SAXPY(
istream<float> x_s, 
istream<float> y_s,
ostream<float> result_s,
float a) 

{
loop_stream(x_s) {

float x, y, result;
x_s >> x;
y_s >> y;
result = a * x + y;
result_s << result;

}
}

StreamC Example

streamprog testSAXPY (String args) {
const int testSize = 128;
stream<float> x_s(testSize);
stream<float> y_s(testSize);
stream<float> result_s(testSize * 2);
stream<float> evenResult_s = 

result_s(0, testSize, STRIDE, 2);
stream<float> oddResult_s = 

result_s(1, testSize, STRIDE, 2);
// initialize x_s and y_s
... 
// compute
SAXPY(x_s, y_s, evenResult_s, 3.4);
SAXPY(x_s, y_s, oddResult_s, 6.7);
...

}
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R-Stream™: Compiling KernelC and StreamC

Compiling KernelC
•Replicate kernel across clusters 
for SIMD control.
•Generate conditional stream IO 
operations for data-driven 
dynamic behavior.
•Modulo-schedule the kernel to get 
a tight loop.
•Explicitly manage communication 
resource.

èè Output is Imagine SIMD 
control program.

Compiling StreamC
•Inline/flatten program into Kernel 
call sequence.
•Constant propagate so strip size is 
explicit.
•Allocate Stream Register File (Local 
Memory) with a Process like Register 
Allocation.

èè Output is C++ program for 
Imagine controller, that 
generates stream initiators and 
synchronization calls.

R-Stream™ can address the mapping challenge 
posed by these new architectures.
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StreamC and KernelC Language: Observations

• Emphasis is on letting programmer express partitioning and parallelism. 
KernelC is like a new assembly language (e.g., modulo scheduling now moves 
to the assembler.)  The major development challenges for compilation –
determining partitioning and mapping - are at the level of the StreamC 
compiler.

• Nevertheless, there is interaction between StreamC and KernelC compilers 
which leads to some hand-holding by the programmer of the compiler.  Some 
of this is due to architectural problems (e.g., spilling scratch registers) and 
some is unavoidable phase interaction. Should they be fused?

• C++ syntax: with special templates and libraries can be compiled by a generic 
C++ (e.g., Microsoft Visual C++) compiler for code development.

• Expression of conditional stream IO operations allows data-dependent data 
motion, and maps directly to special hardware on Imagine or can be 
synthesized with software operations (Kapasi et. al. 2000).
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Streaming Language Design Choices

Imperative (e.g. StreamC, Brook [Stanford])
kernel1(…, streamB);
kernel2(streamB, …); 
Easy to represent state, control-flow, finite streams
Good for describing array-based algorithms 
(stride)
Probably map well to conventional DSP

Dataflow (e.g. StreamIt [MIT], Streams-C [LANL])
kernel1.output1.connect(streamB);
kernel2.input1.connect(streamB);
go();
Easy to represent task parallelism, infinite streams
Good for describing continuously-running systems

The history of streaming 
languages is long.

These programs could be 
transformed, easily, into 
FORTRAN

Challenge is how to map!

This gets much harder 
with dynamic behavior.

There are other things we 
might need to express, 
(e.g., flexibility in ordering 
semantics, periodic 
invocation,) which arise 
from nature of embedded 
systems (Lee 2002)
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Thoughts on Mapping

• Key technologies for compilation for PCA:
– Optimizations that incorporate constraints of small bounded memories.
– Optimizations that incorporate communications bandwidth constraints.

– Optimizations that incorporate non-traditional objectives (e.g., latency, 
power).

• Probably:
– Will see increasing fusion of compiler phases to allow fine-grained 

tradeoffs between parallelism and storage use.

– More and more, see compilation implemented as search/solvers over 
constraint systems.

– New program intermediate representations forms, such as Array-SSA 
(Knobe 1998) or PDG will invigorate development of these key 
technologies.
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Handling Dynamic Behavior Looks Difficult

Dynamic Behaviors
•Data-dependent iteration 
counts, strides, access patterns.
•Conditionals within loops.
•Task parallelism.
•External dynamic conditions: 
mission changes, problem 
arrival, etc.
•Resource changes (hardware 
failures).
•Changes to application (e.g., 
dynamic component 
replacement).
•Morphing.

Characterize by:
Size of change
Time constant of change
Space of configurations

Use existing technologies and tricks 
for parallel dynamic load balancing, 
throttling, mapping, scheduling …
But with the additional challenge of 
greater degrees of parallelism and 
more severe resource constraints.

If finding a static mapping for 
PCA hardware is so hard, how 
can we expect to achieve the 
same result with an online, 
distributed, and low-overhead 
mapper?
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Dynamic Compilation: Can it Apply to HPEC?

Runtime recompilation and insertion of 
new code into running systems.

Changing mission parameters, 
objectives, and system resources at 
runtime.

Java virtual machine.Desire for a morphware “virtual 
machine”

Cross-module optimization at runtime 
simultaneously with class loading.

Runtime assembly and selection of 
library components.

Runtime profiling and profile-driven 
optimization.

Mission parameters (#targets, etc.) 
unknown until runtime.

Optimization at mission initiation.Hardware unknown until mission (e.g., 
failures, other resident apps).

Dynamic Compilation Capabilities
(as demonstrated by R-JIT™ for Java)

PCA Technology Program Objective 
Subset
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Runtime Compilation Issues / Technologies

• How can a compiler be made fast & resource-efficient enough to work 
effectively at runtime?

– Efficient data-structures and IR.
– Integrated optimizations: do multiple mapping and optimization tasks in 

the same phase, limit phase iterations.
– Apply optimization selectively to high-priority sections.
– Sequence from light to heavy optimization based on priority.

• Nevertheless, heavy parallelism and constraint nature of PCA 
architectures presents a new level of compilation challenge to perform 
at runtime.

– Optimizing application might take hours or more  (e.g., solving complex 
constraint system using integer programming).

– We can start by apply the Java strategies to these new compiler problems
• E.g., achieve variation in optimization intensity for modulo scheduling by 

searching first for schedules in looser initiation intervals.

– New approaches
• E.g., pre-analyzed or partially compiled code “finished” at runtime.
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Dynamic Component Selection: Two Possible Approaches

Component Assemblies

•Collections of precompiled 
components (different 
problem sizes, algorithms).

•Decorated with meta-
information (XML) or 
selection control scripts.

•Loader mediates meta-
information and constraints 
to select component.

Object-Oriented Approach (Java/CLOS)
•Component selection is handler selection.
•Loader and compiler tightly integrated.
•Express meta-information within the 
application in the application language.
•Static conditions at call site inferred from 
program context.
•Dynamic conditions at call site handled 
using runtime code generation (e.g., profile-
motivated speculation and generation of 
call-site predicates).
•Expression within programming language 
allows seamless inter-module analysis and 
optimization.

The object-oriented and dynamic compilation 
approach has structured and tested ways of 
handling this.  Advantages in engineering 
economy, simplicity, and reliability.
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Insertion of New Code into Running Systems

• The challenge of dynamic class loading in Java, and how to 
implement: 

– Class hierarchy in a Java application is not static.

– For competitive performance, JIT must perform inter-module optimizations 
using the speculation that class hierarchy is static.

– The action of a dynamic class load invalidates that speculation.

– How to transform in-progress invocations (thread queue, call stack?)
• How do we transfer PC? 
• How do we transform optimized state?

– One approach (Sun’s Hotspot) is dynamic decompilation facility.
• Hairy, slow, complex semantics.  How to validate?

– Reservoir’s approach: pseudo-conditionals and simple code-rewriting.

• These technologies can apply to PCA
– To “morph” to pre-compiled configurations over small mission sets.

– To generate “sockets” for morphs to runtime generated configurations for 
large or open mission sets.
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Reliability of Dynamic Compilation

Concerns about reliability are 
justifiable:

•The complexity of 
dynamic compiler 
transformations exceed 
the complexity of modern 
dynamic instruction issue 
hardware.
•In practice, Reservoir 
has found that other 
leading commercial 
release JVMs fail to pass 
our random Java test 
suite (R-JVV™).

Reservoir’s Approach to Dynamic
Compilation Testing
•Intense application of randomly generated 
tests.
•IR maintenance of extra information to 
detect optimization failures, with graceful 
recovery.
•Coverage analysis increases proportion of 
compiler that is exercised.
•Limit deployment to a single application.

èè Reservoir’s mainframe system R-DYN™
deployment with only one bug found in 4 
years (Bank 2001)

Still, much R&D required specifically in compiler validation:
e.g., Model-driven testing, compiler specification checking, proof-
carrying code.
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Summary

• New programmable DSP architectures can achieve performance near 
fixed function hardware (e.g. Imagine, 20 GOPS).

• ... but introduce major compiler challenges!

• New streaming languages can help.

• Automated mapping for multiple cores/distributed memories is critical 
research area.

• Advancing automatic mapping technology for dynamic compilation 
has the potential to solve other important problems. 
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