

Sc2 C-to-FPGA Compiler

Maya Gokhale, Janette Frigo, Christine Ahrens, Marc Popkin-Paine

Los Alamos National Laboratory

Janice M. Stone

Stone Ergonaut

Overview

Language

- □ C subset augmented with parallel communicating processes
- □ FIFO-based streams to communicate data between processes
- □ Signals and Parameters for coordination and flow control
- □ Process located on hardware (FPGA) or software (Linux PC)

Compiler

- □ Based on Stanford University Intermediate Format (SUIF) library
- □ Targets Linux PC based AMS Firebird board
- □ Easily re-targetable: board architecture described in a file
- Generates Register-Transfer-Level VHDL
- □ Source Code available at http://rcc.lanl.gov

Applications

- □ Signal and image processing
- □ Fixed point, use external memory and Block RAM

Sc2 Processes

- Process body (the code it contains) is described in a process function
 - Image: Image:
 - Process function header describes streams, signals, and parameters that the process function uses
- Each process is an independent unit ///PROCESS directive describes the process
- Processes execute concurrently
 - □ Sc_initiate intrinsic is used to start a process
 - Any software process may initiate another software process or hardware process
- Arrays of processes can be defined

Example: Process Function directives

Two process functions with input and output streams /// PROCESS_FUN host1_run

/// OUT_STREAM sc_uint32 output_stream

/// PROCESS_FUN_BODY

/// PROCESS FUN END

- - -

- - -

/// PROCESS_FUN controller_run /// IN_STREAM sc_uint32 input_stream /// OUT_STREAM sc_uint32 output_stream /// PROCESS_FUN_BODY

/// PROCESS_FUN_END

Example: Process and Connect Directives

/// PROCESS controller PROCESS_FUN controller_run

TYPE HP ON PE0

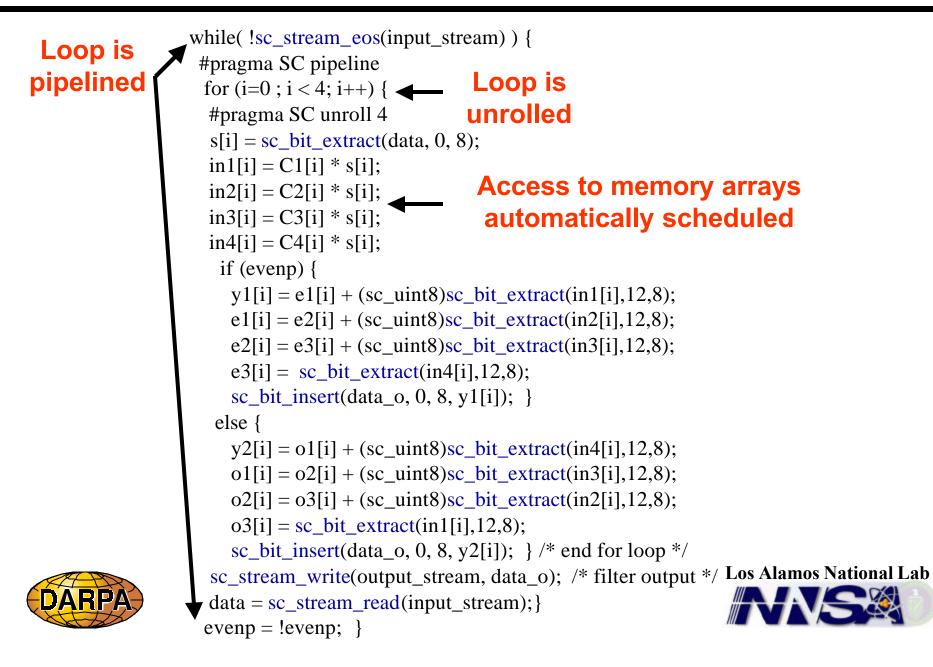
/// PROCESS host1 PROCESS_FUN host1_run

Connections can also be described graphically, and /// directives are generated

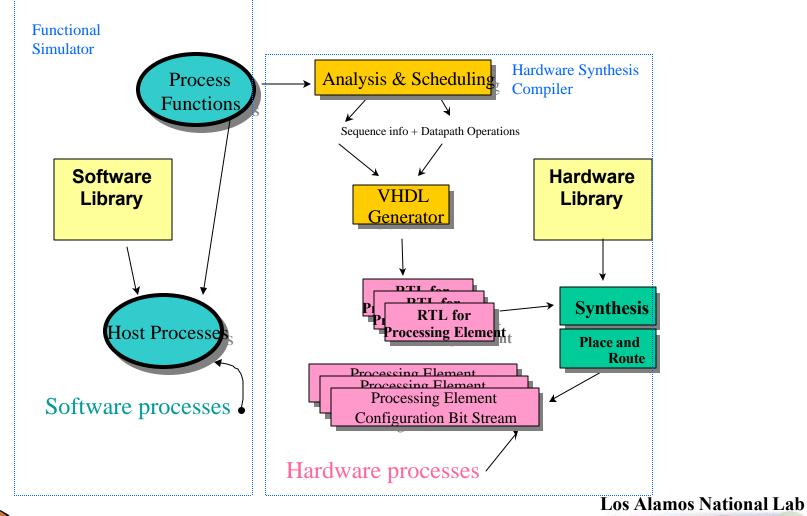
host1

controller

Streams and Signals


- Streams transmit data between processes
- Streams can be defined between software, hardware-software, and hardware processes
- Stream intrinsic functions are defined to
 - □ Read
 - Check for end of stream
 - □ Write
- Hardware streams are implemented as hardware FIFOs with user-defined FIFO depth in the Streams-C hardware library
- Software streams are managed by the thread-based Streams-C software runtime library

- Signals are used to synchronize processes and coordinate phases of processing
- Signal intrinsic functions are defined to
 - Post a signal, along with a single word of data
 - Wait for a signal and receive a single word of data
- Hardware and software signal implementation is similar to streams
- Parameters provide a mechanism for giving each newly initiated process a word of unique data.



Sc2 Code Example: Polyphase Filter

Compiler Structure

Synthesis Compiler Features

- Uses the SUIF 1.3 library (suif.stanford.edu)
- Uses Tim Callahan's inline pass to inline function calls
- Optimizations include
 - SUIF optimizations such as constant folding, common sub-expression elimination, dead code elimination
 - Loop pipelining of innermost loops
 - Loop unrolling (directive)
- Compiler schedules sequential code, performs fine-grained parallelization
- Compiler reads board architecture from a file
 Easily retargetable
- Compiler source is available at rcc.lanl.gov

Board Definition File

Memory Type EXTERNAL64 Data size 64 bits **Read/Write Port** OUT MAR width 32 bits **BUFFER MDR width 64 bits** OUT R EN width 1 bit OUT W EN width 1 bit Identify MAR name MAR Identify MDR name MDR Identify Read enable name R EN Identify Write enable name W EN Load Store latency 1 (MAR, MDR) Memcopy latency 8 MAR, MDR, MDR, MDR, MDR, MDR, MDR, MDR, (MAR, MDR) **Architecture Firebird Board Virtex2000 Processor PE0** 4 EXTERNAL64 memory mem size 1000000 memory-number 0 controller Mem641 generics (schedule = priority, LADbase=0x1000, LADinc=0x200, mem component=EXTERNAL) Los Alamos National Lab

Applications

Poly phase filter bank of four

- **D Ppf_a: 32-bit stream input data, external memory for coefficients**
- □ **Ppf_ab: 32-bit stream input data, block ram for coefficients**
- **Ppf1: 64-bit external memory input data, registers for coefficients**
- Ppf: 32-bit stream input data, registers for coefficients

K-Means Clustering

- Unsupervised clustering of multi-spectral data
- 32-bit stream input data, block ram for centers

Fast Folding

Modified butterfly FFT

- Performance evaluation in progress automatically generated hardware ppf1 faster than GHz Pentium
- Applications source code available on web site

Summary

- Streams-C compiler synthesizes hardware circuits that run on reconfigurable hardware from parallel C programs
- C-to-hardware tool with parallel programming model and efficient hardware libraries
- Functional Simulator runs on host workstation
- 5 10x faster development time over hand-coded
- Performance comparable to GHz Pentium
- Open Source we welcome collaborations

