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Goals of Presentation

• Highlight major design trade-offs when comparing an 
ASIC and FPGA solution for pulse compression

• Provide information to help choose the right tool for the 
right job



Outline

• Overview of pulse compression

• Comparison of computational approaches

• Trade-offs when mapping algorithm to an ASIC or 
FPGA

• Example analysis

• Other considerations

• Summary



Pulse Compression Overview
• Convolves return signal with complex conjugate of transmit 

waveform
• Produces peak where correlation occurs [1]

– Indicates location of target in range
– Compressed pulse narrower than width of transmit waveform (higher 

range resolution)
– Helps radar obtain good ranging accuracy with low instantaneous 

transmitter power
• Ability to produce narrow peaks depends upon transmit waveform’s

– Bandwidth
– Duration (length)

• Bandwidth  • duration = Time Bandwidth Product (TBP)
• Higher TBP [2]

– Finer range resolution
– Lower instantaneous transmitting power
– Requires more computational horsepower



Pulse Compression Illustration

Pulse 
Compression
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transmit 
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Received Signal (t) Compressed Received Signal (t)

• Two targets in receive window hard to pinpoint in time 
(range)

• Targets clearly stand out after compression



Approaches to Digital Pulse Compression

• Time domain convolution 
– Filter time samples of receive window using Finite Impulse Response 

(FIR) filter

– Use transmit waveform samples as tap values (number of taps = TBP)

• Frequency domain complex multiplication
– FFT (of receive window)
– Complex multiplication by complex conjugate of FFT (transmit 

waveform)

– IFFT

– Overlap by TBP if sectioned convolution*

• Both approaches mathematically equivalent
– Convolution (time) ⇔ multiplication (frequency)

* For DSP implementation, TBP = duration • sampling rate



Which Approach to Use?

• Computational efficiency is the driving factor

• Operations defined here as total number of multiplies and 
adds

• Number of FIR operations per input sample:

• Number of FFT operations per input vector:

• Both equations assume complex data

= 8N – 2  where N = number of taps

= 5 N log2 N  where N = FFT length



Example: TBP = 256
FIR operations = 8 * 256 - 2 = 2046

→ 2046 operations need to happen every new input sample

FFT operations:
→ assume an FFT length of twice the TBP

5 * 512 * log2 (512) = 23,040
→ this needs to happen twice (once for FFT, once for IFFT)*

= 2 * 23,040 = 46,080 operations
→ i.e. for every input vector, 46,080 operations need to occur
→ assuming sectioned convolution, overlap input vectors by TBP
→ thus, effective operations per input sample:

46,080 / ( 512 – 256 ) = 180 operations per new input sample

FFT approach is over 11 times as efficient as FIR in this case!

* Time domain window can be folded into first pass of FFT
Complex multiplication can be folded in with first pass of IFFT



Computational Efficiency of FFT vs. FIR

Comparison of Pulse Compression Operations
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Mapping FFTs into Hardware

• ASIC or FPGA?
– ASIC: Pathfinder-2 programmable frequency domain vector 

processor

– FPGA: Xilinx VirtexE

• Trade space considerations:
– Radar system parameters

• TBP
• Number of samples in the receive window

– Number of bits (precision and dynamic range)
– Performance (measured in Pulse Repetition Frequency)



Radar System Parameters
• FFT size determined by ( TBP + Ns - 1 )  [3]

– TBP = number of samples representing transmit pulse
– Ns = number of samples in receive window

• Longer FFTs need more 
– Processing

• Larger radix cores
• More passes through the data

– Memory
– Bits

= [ Pw + 2 (Rw / c) ] • Fs

Pw = pulse width of transmit waveform
Rw = range window of the radar
c = speed of light
Fs = sampling rate of digital receiver system



Number of Bits

• Today’s high speed ADCs
– 14 bits up to 100 MSPS

– 12 bits up to 200 MSPS

• FFT radix computations create word growth
– Radix 2 can cause growth of one bit just due to additions
– Radix 4: two bits

– Radix 16: four bits

• Longer FFT lengths require more radix passes
– More opportunity for growth



Floating Point vs. Fixed Point [4]

• Floating point
– Can lead to truncation or rounding errors for both addition and 

multiplication

– Overflows highly unlikely due to very large dynamic range
– Requires more hardware resources than fixed point (adders in 

particular)

• Fixed point
– Truncation or rounding errors occur only for multiplication

– Addition can lead to overflows
• Avoid by making word length sufficiently long (may not be 

practical)

• Avoid by shifting (scaling), but this can compromise precision



Performance: Pulse Repetition Frequency

• Defines how often the radar transmits pulses

• Higher PRFs imply
– Faster update rates and track loop closure

– Lower Doppler ambiguity
– Higher range ambiguity

• Time between transmit pulses sets a limit on the 
processing time available

• Conversely, the processing time required for a given FFT 
size limits the achievable PRF



Example Analysis

• Assume the following radar system parameters:

10 KmRange Window

10 MSPS
A/D Sampling Rate 
(Baseband)

10.2 usecTransmit Pulse Width



Calculate FFT Size

• TBP = pulse width • sampling rate
– 10.2 usec • 10 MSPS = 102 samples

• Ns (number of samples in the receive window)
– [ 10.2 usec + 2 ( 10 Km / c ) ] • 10 MSPS = 769 samples

• FFT size = 102 + 769 – 1 = 870 samples minimum

• Round to power of two: 1024 points

• Well within capabilities of Pathfinder-2 or FPGA



Define Word Length

• Assume 14 bit ADC
• Assume one bit growth per radix 2 stage (ten stages for 1K FFT)
• Implies word length of 24 bits for fixed point operations

– For worst case input to FFT

– Assuming rest of system can support the dynamic range

• Fixed point implementation must
– Define sufficiently large word (accumulator), or
– Scale data input to each radix stage

• Blindly shift at every iteration (Xilinx 1K FFT 16 bit core) [5]

• Implement “intelligent” shifting (e.g. block floating point)

• Not an issue for floating point (Pathfinder-2)



Processing Performance

• Algorithm: window → CFFT → CMUL → IFFT for 1K vector
• Pathfinder-2

– 35.4 usec at 133 MHz clock
– Achievable PRF  = 1 / 35.4 usec = 28.3 KHz assuming one channel

– 32 bit IEEE floating point

• Xilinx XCV2000E sizing estimate
– Assume 80 MHz clock rate

– Achievable PRF (with 75% utilization) ≈ 15 KHz (one channel)
– 24 bit fixed point

• Overflow still a concern

• 24 bits would suffice for 1K FFT alone (most applications)

• Does not provide for growth due to IFFT

• Scaling / shifting logic will still be needed



Additional Design Considerations
• Part count

– Minimum Pathfinder-2 solution requires
• Pathfinder-2 ASIC
• Three external address generators
• Three SRAM banks
• Small FPGA to act as a controller

– Entire solution could fit in XCV2000E

• Parts costs (estimated)
– Pathfinder-2 solution = $1,500
– Xilinx XCV2000E = $2,900

• Design flexibility and development
– What if you decide to change FFT sizes?
– What if you want to match against multiple transmit waveforms?



Summary

• Less demanding pulse compression application good match for 
FPGAs

• More demanding system requirements quickly drive solution 
towards a Pathfinder-2 type of approach

Not Easily Scalable to More 
Demanding Algorithms

Easily Scalable to More Demanding 
Algorithms

Valid Dynamic Range and Precision 
Concerns

Minimal Precision and Dynamic Range 
Concerns

More ExpensiveLess Expensive

Lower Parts CountHigher Parts Count

Lower PRFsHigher PRFs

XCV2000E (FPGA)Pathfinder-2 (ASIC)

Pulse Compression Application (1K Vector Size)
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