

Development Status of the Vector, Signal, and Image Processing Library (VSIPL)

M. Richards¹ ,D. Campbell¹ (presenter), R. Judd², J. Lebak³, and R. Pancoast⁴

¹Georgia Tech Research Institute, Atlanta, GA
²U.S. Navy SPAWAR Systems Center, San Diego, CA
³MIT Lincoln Laboratory, Lexington, MA
⁴Lockheed-Martin NESS, Moorestown, NJ

^{1,3} These authors sponsored by the U.S. Navy under GSA contract GS10TF02EBM0528 and Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Air Force, General Services Administration, or United States Navy.

LForum

Acknowledgements

HPEC02-2

VSIPL Goals

- Portable to workstations, embedded systems, FPGAs with minimal performance cost
- Applicable to simple and complex applications
- Easier upgrade cycle
- Reduced development time and cost

VSIPL Forum

VSIPL API Properties

- Standard API for Vector/Signal Processing
 - Version 1.02 released February 26, 2002
 - minor corrections and updates to VSIPL 1.01
 - Version 1.1 in final edit, expected 4Q 2002
- TASP VSIPL demonstration library
 - Developed by Randy Judd of USN SSC-SD
 - ANSI C production mode implementation
 - Core and Core lite profiles
 - "Core Plus" implementation including additional functionality
- Portable C Test Suite 1.03
 - Developed by Dan Campbell of GTRI
 - Tests compliance with Core Lite Profile of VSIPL 1.01 API
 - Does not test performance (speed or memory)

All may be downloaded from VSIPL web site http://www.vsipl.org

VSIPL Forum

Major Resources Available at vsipl.org

- VSIPL 1.02 API document
- Feb 2002 VSIPL Tutorial/User's Group presentations
- Supporting documents
 - VSIPL basic requirements
 - VSIPL profile definitions
 - and more ...
- VSIPL Reference Implementation Software
 - three builds: Core Lite, Core, "Core Plus"
 - VSIPL Compliance Test Suite 1.03
- Links to VSIPL Product Vendors
- VSIPL Forum Information

http://www.vsipl.org

- Correction of various errata
- New functions

-Singular value decomposition, $A = USV^H$

- includes functionality to extract subspaces corresponding to the highest or lowest singular values
- supports pre- and post multiplication of a matrix by $U \mbox{ or } V$
- -Windowed FFT
 - Defines window as part of the FFT object
 - Integrates data taper and FFT calculation
- -New I/O functions to
 - Operate on VSIPL vendor-dependent objects (e.g., FFT, QR, LUD)
 - differ from block objects because the data associated with them is implementation-dependent
 - Allow objects to be communicated, saved to files, etc.

VSIPL Forum

Current Commercial Implementations (Aug. 2002)

	Vendor	Implementation*
GSPI	CSPI	Core Lite also resell VSI-Pro for Core
COMPUTING SOLUTIONS	DNA Computing Solutions supported under VxWorks and Linux	Core
MCCI	MCCI Autocoding Toolset	Core Lite
MERCURY COMPUTER Systems, Inc.	Mercury Computer Systems	Core Lite + some 2D
Software	MPI Software Technology, Inc. Licensed by Thales, Radstone, Concurrent, CSPI; Supports G4 under VxWorks, LynxOS, Linux, MacOS, Linux PPC, and Windows	Core
SKYCOMPUTERS	Sky Computers	"Core Plus", multiple data types
microsystems	Synergy Microsystems	Core Lite
TRANSTECH DSP	Transtech DSP	Core

* Most vendors also accommodate specific customer requirements

VSIPL Activities

High Performance Embedded Computing Software Initiative

- HPEC-SI seeks to bridge the gap between high level tools and embedded hardware by building and extending on existing open standards such as VSIPL, MPI, DRI, etc.
- HPEC-SI extensions will extend VSIPL into embedded niches not currently addressed
 - C++ binding
 - parallel data distribution and computational algorithms

- C++ binding offers benefits over C binding
 - much more compact code
 - drastic reduction in number of function prototypes
 - enables use of template and generic programming techniques to gain performance improvements similar to early binding
- HPEC-SI program serving as forum for defining VSIPL++ concepts and 0.1 spec
 - CodeSourcery implementing detailed specification and reference library

HPEC02-1

 Goal is to have a 0.1 draft specification and prototype software in Fall 2002

- Standard VSIPL machine model is a single threaded uniprocessor
- Efficient parallel algorithms require
 - coordinated data distribution and parallel algorithms strategies
 - user control of data distribution
 - scalability of algorithm to different machine sizes and layouts

- HPEC-SI is researching approaches to development of parallel VSIPL
 - key issue is memory management strategy (blocks and views)
- Candidate components to build on include:
 - Data Reorganization Interface (DRI)
 - MIT/LL-Lockheed Martin Parallel Vector Library (PVL)
 - USN SSC-SD Scalable Programming Environment (SPE)
 - Commercial products such as GEDAE, MCCI Autocoder, Raytheon Sage
- Goal is to have a 0.1 draft specification and prototype software in Spring – Summer 2003

Summary

- VSIPL 1.02 is available
- VSIPL 1.1 in final edit, due 4Q CY2002
- Implementations are here
- VSIPL development is continuing
 - HPEC-SI leading extension to VSIPL++ and "Parallel VSIPL"

