Meeting the Demands of Changing Operating Conditions at Runtime Using Adaptive Programming Techniques for Distributed, Realtime Embedded Computing

Rick Schantz (schantz@bbn.com) Joe Loyall (jloyall@bbn.com)

BBN Technologies Cambridge, Ma.

HPEC Workshop 2002 September 25, 2002

Outline

- A Point of View & Background
- Technologies for Managed Behavior in Rapidly Changing Environments
- Examples we've built, tested and evaluated
 - -WSOA, UAV
- Some Lessons Learned and **Challenges Going Forward**

Overview

- High Performance Isn't Only About Achieving High Speed (but that as well)
- Its also about priority, precision and safety ...and sustaining high performance over changing environments
- We need to maintain an appropriate capability across significant events for the capability to be truly useful and applied to critical problems
- Systems operating in and across the real physical universe (embedded systems) encounter much more volatility
- It's necessary to build systems differently on a more flexible, manageable technology base to reflect this change
- Instead of users adapting to what systems can deliver, systems need to easily adapt to what the situation demands

Network Centric Applications Need to Be Aware of Their Operating Context and Adapt Their Behavior to Match

- DRE contexts are more volatile than backplanes and desktops, and less likely to be overprovisioned
- Requirements may change with the current situation
- Truly dependable systems can be expected to do the "right/best thing" under the prevailing circumstances at all levels of available resources
- This requires support for adaptive, runtime behaviors and attention to finer grained real time resource management decisions
- Middleware provides and enables the additional structure for organizing adaptive behavior and tradeoffs of the different QoS dimensions

Embedded Application Context

Outline

- A Point of View & Background
- Technologies for Managed Behavior in Rapidly Changing Environments
- Examples we've built, tested and evaluated
 - -WSOA, UAV
- Some Lessons Learned and Challenges Going Forward

Network Centric QoS Interface and Control as Part of a Layered Architecture

Lower Level Middleware and Infrastructure Control

TAO: A Real-time CORBA Compliant ORB

End to End Resource/QoS Management

RT CPU, Tasking, Scheduling

End to End Resource/QoS Management

Network and Data Management

Examples: RTCORBA with Diffserv Capability Preserving End-to-End Priorities

- Existing priority in RTCORBA used for OS-level task scheduling across distributed nodes
- Our enhancement to RTCORBA uses this priority to set Diffserv field in IP packets associated with a specific CORBA call
- Network treats packets differently based on value of Diffserv field; can be used as another mechanism for end-to-end QoS

Formalizing Adaptive Behavior

QuO is middleware that offers an application the ability to adapt to a changing environment in which it is running

Contracts Summarize System Conditions into Regions Each are Appropriate for Different Situations

- Contract defines nested regions of possible states based on measured conditions
- Predicates using system condition objects determine which regions are valid
- Transitions occur when a region becomes invalid and another becomes valid
- Transitions trigger adaptation by the client, object, ORB, or system

In-Band and Out-of-Band Adaptation and Control Using QuO

- In-band adaptation provided by the delegate and gateway
 - A delegate decides what to do with a method call or return based upon the state of its contract
 - Gateway enables control and adaptation at the transport layer
- Out-of-band adaptation triggered by transitions in contract regions
 - Caused by changes in the system observed by system condition objects

Outline

- A Point of View & Background
- Technologies for Managed Behavior in Rapidly Changing Environments

- Examples we've built, tested and evaluated
 - -WSOA, UAV
- Some Lessons Learned and Challenges Going Forward

WSOA: Enroute Adaptive Planning

- Compiles Virtual Target FolderRetasks Enroute Strike
- Collaboration with Warrior to replan route
- IDL Interface

- "Browser" Requests for Target and Imagery data
- Collaboration with C2 Node for Target Review and Mission Replan
- Previews Updated Mission Enroute
- IDI Interface

QoS Adaptation Domain

Adaptive Behavior Integrated with Advanced Resource Management

The UAV Concept of Operations

Instantiating an Experimental Configuration

Maintaining QoS requirements under dynamic conditions, making appropriate tradeoffs using QuO contracts

Uses off-the-shelf components

- QuO adaptive middleware
- Real-time DOC middleware
 - -TAO ORB
 - Naming Service
 - A/V Streaming Service
 - AQoSA
- DVDViewer
- Simulated ATR

Heterogeneity

- Data formats MPEG, PPM
- Mechanisms
 - RSVP, DiffServ
 - Filtering, scaling, compression
- Networking
 - Wired Ethernet
 - Wireless Ethernet

BBN TECHNOLOGIES

Adaptation Mechanisms for CPU and Network Overload

Mission requirements of UAV scenario

Timeliness

 Maintain an outof-the-window view of UAV imagery

Importance

 Frames must be dropped in reverse order of importance

Fidelity

 Highest fidelity frames must be delivered

NETWORK RESERVATION

- Condition: Excessive Network load
- Action: Use IntServ and DiffServ to reserve bandwidth

LOAD BALANCING

- Condition: Excessive CPU load
- Action: Migrate distributor to a lightly loaded host

Distributor I I I DATA FILTERING

- Condition: Excessive Network or CPU load
- Action: Drop selective frames

IMAGE MANIPULATION

- Condition: Excessive Network load
- I Action: Scale image to smaller size

BBN TECHNOLOGIES

A Verizon Company

Experiment Metric – Latency Control

Experiment 1

- Sender, distributor, and receiver running on three Linux boxes, each with a 200 MHz processor and 128 MB of memory.
- 5 minutes (300 seconds) of video
- Introduce CPU load 60 seconds after start, remove after 60 more seconds
- Transport is TCP (reliable)

Adaptation	Delay (sec)		
	Mean	Maximum	
None	5.391	32.696	
Frame Filtering	0.067	1.930	

Benefit Metrics

- Lower latency in the presence of load
 - Average 0.067 sec vs. 5.391 (80x imp.)
 - Worst case 1.930 sec vs. 32.696 (17x imp.)
- Control over delivery of important data in the presence of load
 - With no adaptation, delay was arbitrary
 - With adaptation, we chose to sacrifice less important frames to get better QoS for more important frames

Experiment Metric – Control of Data Loss

Experiment 2

- Sender and distributor (933 MHz Pentium III, 512 MB RAM); receiver (200 MHz Pentium II, 144 MB RAM); 10 Mbps link; UDP
- 5 minutes (300 seconds) of video, with network load introduced after 60 seconds for 60 seconds (600 total I frames sent)
- Three runs
 - Control, no adaptation
 - Frame dropping adaptation only
 - Frame dropping and network reservation

Adap- tation	No. I frames lost	% getting through w/load	Avg. delay - no load (ms)	Avg. delay - load (ms)	Max. delay (ms)
None	119	1.65%	56.33	NMF	NMF
Frame Filter- ing	0	100%	57.01	122.15	143
FF + RSVP	0	100%	58.15	88.53	106

Benefit Metrics

- Control over loss of important data
 - 100% of important data arriving vs. 1.65%
- Improved performance with adaptation combo
 - FF+RSVP has 28% lower delay under load than FF alone (infinitely better than no adaptation)

Applicability Metrics

- Low overhead of QuO adaptation
 - Extra avg delay: 1.2% (FF), 3.2% (FF+RSVP)
 - Std. Dev: 5.19 (none), 5.25 (FF), 4.60 (FF+RSVP)

Experiment Metric – Graceful Degradation

Experiment Motivation

- Full network resources will frequently not be available to applications
 - Simply not enough to support full video
 - Contention with other video sources
- Applications need to be able to work with degraded resources

Experiment

- Sender, distributor, and receiver on 750 MHz
 Pentium III with 512 MB RAM; 10 Mbps link
- 5 minutes (300 seconds) of video, with network load introduced after 60 seconds for 60 seconds (600 total I frames sent)
- Partial reservation, frame filtering alone, and in combination

Adap- tation	No. I frames lost	% getting through w/load	Avg. delay* (ms)	Std. Dev.*
FF only	6	95.04%	93.26	110.28
Partial Resv Only	69	43.90%	118.54	217.56
FF + Partial Resv	1	99.18%	76.83	84.81

^{*}Lost frames not included in delay and std. dev. figures

Benefit Metrics

- Combination has lower data loss
 - 17% of the data loss of FF; 1.4% of Partial Resv.
- Combination has lower average latency
 - 17.6% lower than FF; 35.2% lower than Part Resv.
- Combination has lower standard deviation
- Scale: Can support 5+ partial reservations in the bandwidth of one full reservation

Outline

- A Point of View & Background
- Technologies for Managed Behavior in Rapidly Changing Environments
- Examples we've built, tested and evaluated
 - -WSOA, UAV

 Some Lessons Learned and Challenges Going Forward

Lessons Learned and Open Research Issues

- High Performance also means working under dynamically changing requirements and unanticipated conditions
- It is feasible to operate with less than a full complement of resources, so long as they are targeted at the critical parts
- There is a context sensitive nature to "what's the best behavior"
- Late binding is an avenue to many innovative approaches
- Layered solutions with integrated parts are an important development strategy, especially for large, complex problems. This involves information sharing and cooperative behavior across and between these layers
- Blending Reliability, Trust, Validation, and Certifiability without sacrificing effective real time performance

