
Rapid Prototyping of Matlab/Java Distributed Applications
using the JavaPorts Components Framework

Elias S. Manolakos

Electrical and Computer Engineering Department
Northeastern University, Boston MA 02115

Elias@ece.neu.edu

This work was supported in part by CenSSIS, the Center for Subsurface Sensing and
Imaging Systems, under the ERC Program of the National Science Foundation
(Award Number EEC-9986821)

Goals
JavaPorts is a Distributed Processing Environment (DPE)
designed to facilitate the rapid prototyping and evaluation of
end-to-end computation strategies that involve many
concurrent tasks interacting with each other and assigned to a
pool of networked heterogeneous resources.

Specifically, the goals of this project are to provide:

• Platform-independent Distributed Processing Environment

• Reusable Component Support

• Matlab support for legacy code and to take advantage of

Matlab’s extensive library of image processing functions

• Automated tools for configuration and execution that speed

development and increase productivity

Features
With the latest version, JavaPorts 2.5, developers can:

• Create reusable software components in both Matlab and

Java

• Seamlessly integrate Matlab and Java components in a

distributed application

Furthermore, JavaPorts provides to developers:

• High-level Task Graph Abstraction and graphical tool

(JPGUI) for describing Distributed Applications

• JavaPorts API that supports Anonymous Message Passing

• Automated Tools for Launching Distributed Application on

the Network

Significance

• Many signal and image processing algorithms are inherently parallel
and can take advantage of multiprocessor configurations to reduce
computation time.

• Although computing PC clusters are an increasingly popular parallel
processing platform, there is still a need for software tools to facilitate
the rapid prototyping of distributed applications on these clusters.

• While Java provides the software developer with “write once, run
anywhere” platform-independence, JavaPorts extends this capability to
multithreaded code for networked computers with heterogeneous
nodes.

• A parallel application developed using JavaPorts can easily be
reconfigured to take advantage of new computing resources, or even
moved entirely onto a different network, without requiring any code
changes.

Contributions
• The JavaPorts project contributes to component-based parallel

computing by providing an intuitive means of defining a distributed
application via a high-level Task Graph abstraction.

• The JavaPorts environment provides the developer with all the tools
necessary to develop a distributed application and launch it on a
network of heterogeneous computing nodes.

• Collectively the JavaPorts GUI, Ports API, and runtime environment fill
a void that exists in the area of component-based distributed application
development.

• JavaPorts can be a powerful tool for anyone involved in image
processing by enabling them to rapidly develop a distributed processing
application using a combination of existing “off-the-shelf” software
modules.

• JavaPorts-compliant software components can be written in Java or
Matlab and integrated into the same application.

Related Projects
• Java//

– A Java library that uses reification and reflection to support
transparent remote objects and seamless distributed computing in
both shared and distributed memory multiprocessors

• JavaParty
– Supports transparent object communication by employing a run-

time manager responsible for contacting local manager and
distributing objects declared as remote

• JMPF
– Provides portability of user applications over heterogeneous

platforms while eliminating the need for complicated socket
programming in the application code

• JavaPorts
– Application is defined in a top-down fashion as a collection of

interconnected concurrent tasks with clearly marked boundaries

– Top-level application architect determines “what goes where”

– Each software component can be developed independently

The JavaPorts Task Graph

T2 = JavaWorker

Port[0]

T3 = JavaWorker

Port[0]

M2

Port[1]

T1 = Manager

Port[2]

M1

Port[0]

T4 = MatlabWorker

M3

Port[1]

• Each Task is a Java thread or

Matlab function

• Tasks communicate via Port

objects

• A task writes to/reads from its own

Ports and does not need to know

where its Ports are connected to

(anonymous message passing)

• Tasks may correspond to new or

existing software components

• Tasks are allocated to Machines

(possibly many-to-one)

• Task source code remains the
same even if the task allocation
changes (portability)

Task Graph Representations
BEGIN CONFIGURATION

BEGIN DEFINITIONS
DEFINE APPLICATION “Star”
DEFINE MACHINE M1=“corea" MASTER
DEFINE MACHINE M2=“walker“
DEFINE MACHINE M3=“hawk”
DEFINE TASK T1="Manager" NUMOFPORTS=3
DEFINE TASK T2=“JavaWorker" NUMOFPORTS=1
DEFINE TASK T3=“JavaWorker“ NUMOFPORTS=1
DEFINE TASK T4=“MatlabWorker" NUMOFPORTS=1 MATLAB

END DEFINITIONS
BEGIN ALLOCATIONS

ALLOCATE T1 M1
ALLOCATE T2 M2
ALLOCATE T3 M2
ALLOCATE T4 M3

END ALLOCATIONS
BEGIN CONNECTIONS

CONNECT T1.P[0] T2.P[0]
CONNECT T1.P[1] T3.P[0]
CONNECT T1.P[2] T4.P[1]

END CONNECTIONS
END CONFIGURATION

P[0]

T2.P[0]

M1

"corea"

T1

"Manager"

T2.P[0]

P[0]P[1]

T3.P[0]

M2

"walker"

M3

"hawk"

T2

"JavaWorker"

T3

"JavaWorker"

T4

"MatlabWorker"

P[0]

T1.P[0]

P[0]

T1.P[1]

P[1]

T1.P[2]

AppName

"Star"

P[2]

T4.P[1]

JPGUI tool for Task Graph capture

Graphical Component-based Development

A second MatlabWorker component is imported into the application

Automatic Task Graph Generation

The Application Development Cycle
Step 1: Create an Application Task Graph

Create / Edit

user

JPGUI AMTP tree

configuration

file

Save

Create / Edit

user

Save

Step 4: Launch the Distributed Application

user

Run

Run

PortManager

AMTP tree

JP

component

Run

Script

PortManager

AMTP tree

JP

component

Step 2: Compile Application

user

AMTP tree

JACT
Run

launching

script

configuration

file

component

templates

Step 3: Complete Components

user

template

completed JP

component

Run
text editor

The JavaPorts API
• public Object AsyncRead(int MsgKey) throws RemoteException

– Allows calling task to retrieve a message from one of its ports. The message
is identified by the integer-valued MsgKey. If the message has not arrived
AsyncRead does not block - it returns null and terminates.

• public void AsyncWrite(Object msg, int MsgKey) throws RemoteException
– Spawns a new thread in order to transfer (asynchronously) the specified

message Object. If the receiving port is not waiting, the message will be
stored in its port list. The calling task is not blocked.

• public Object SyncRead(int MsgKey) throws RemoteException
– Similar to AsyncRead but it will block the calling task until the specified

message arrives at the port.

• public void SyncWrite(Object msg, int MsgKey) throws RemoteException
– Similar to AsyncWrite but the calling task will block until the message is

retrieved by the receiving task. No new thread is spawned.

The Java Code Template
public class Manager extends Thread {

private static Port[] port_;
private String TaskVarName_;
public Manager(String TaskVarName) { // constructor

super();
TaskVarName_ = TaskVarName;

}
public synchronized void run () { try {

PortManager portmanager = new PortManager();
port_ = portmanager.configure(“Star", TaskVarName_);
// User application code goes here
portmanager.release(); // distributed termination

} catch(Throwable e) { e.printStackTrace(); System.exit(-1); } }
public static void main (String args[]) {

Manager ManagerThread = new Manager(args[0]);
ManagerThread.start();
try { ManagerThread.join(); } catch (Throwable e) { e.printStackTrace();

System.exit(-1); } System.exit(0); }
}

The Matlab Code Template
function Manager(TaskVarName)

try
portmanager = PortManager;
port_ = portmanager.configure(“Star”, TaskVarName);

% User Application code goes here

catch
exceptionstr = lasterr;
exceptionstr

end

portmanager.release; // distributed termination
quit;

The Port-to-Port Communication Protocol

Manager
Task

NODE 1 NODE 2

Worker
Task

WAIT

Spawn a write thread

PortThread

Remote list is full
AsyncRead()

Expand List

FIFOQueue
PortList

Enter FIFO
Queue Wait for

dispatch

Port[0]Port[0]

Execute write on remote port
AsyncWrite()

Insert request into port list

Port list is full

Port list is full
Throw exception is
message not found

LEGEND:
Method Calls
Method Return
Values

Class Instances

Active Objects

JavaPorts Cluster Applications

Visualization PC

Laptop

Compute Server

Reconfigurable Hardware
PC

Imaging

Instrument
I

Sensors
Suite I

Instrument
II

Disk array

Task Graph

Tasks a
ssi

gned

to C
luste

r

Disk array

Workstation

Workstation

Workstation

Cluster

Sensors
Suite II

Tasks assigned
to PC with RC

Tasks assigned
to Server

Displaying
Results

Monitoring

Ping Pong Experiments

• Simple ping-pong message passing between two

JavaPorts tasks

• Used to benchmark performance when passing large

images between nodes

• Considered four different message passing combinations

(Sync-Sync, Async-Sync, Sync-Async, Async-Async)

• Compared JavaPorts to MPI, and Java tasks with Matlab

tasks

Java Ping Pong Code
Worker

for (int r = 0; r < Manager.R; r++) {

message=
(Message)port_[0].SyncRead(0);

port_[0].SyncWrite(message, 0);

}

Manager

for (int r = 0; r < R; r++) {
long time = System.currentTimeMillis();

port_[0].SyncWrite(message, 0);

messRecv=(Message)port_[0].SyncRea
d(0);

time = System.currentTimeMillis() -
time;

}

Matlab Ping Pong Code
Worker

for r = 1:R,

message = port_(1).SyncRead(0);

port_(1).SyncWrite(message, 0);

end;

Manager

for r = 1:R,
tic;

port_(1).SyncWrite(sendMessage, 0);

recvMessage = port_(1).SyncRead(0);

rtt(r) = toc;
end;

LAM/MPI Ping Pong Code
Worker

for (i = 1; i <= NTIMES; i++) {

MPI_Recv(buffer, length,MPI_CHAR,
proc_A, ping, MPI_COMM_WORLD,
&status);

MPI_Ssend(buffer, length, MPI_CHAR,
proc_A, pong, MPI_COMM_WORLD);
}

Manager

start = MPI_Wtime();
for (i = 1; i <= NTIMES; i++) {

MPI_Ssend(buffer, length, MPI_CHAR,
proc_B, ping, MPI_COMM_WORLD);

MPI_Recv(buffer, length, MPI_CHAR,
proc_B, pong, MPI_COMM_WORLD,

&status);

}
finish = MPI_Wtime();

Matlab/MPITB Ping Pong Code
Worker

for i=1:NTIMES

MPI_Recv(array,0,TAG,NEWORLD);

MPI_Ssend(array,0,TAG,NEWORLD);

end

Manager

T=clock;
for i=1:NTIMES

MPI_Ssend(array,1,TAG,NEWORLD);

MPI_Recv(array,1,TAG,NEWORLD);

end
T=etime(clock,T);

Ping Pong Timing Results

SyncWrite/SyncRead(Ssend/Recv) Throughput
for large image size

0.1

1

10

100

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Image Size (Byte)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Matlab/JP

JavaPorts

LAM/MPI

Matlab/mpitb

Serial Image Deblurring

Original Image

Kernel

X Filtered Image

2D
Convolution

Serial 2D Convolution

Parallel Image Deblurring

O r i g i n a l I m a g e
K e r n e l

F i l t e r e d I m a g e

2 D
C o n v o l u t i o n

s u b -
i m a g e

s u b -
i m a g e

s u b -
i m a g e

s u b -
i m a g e

X

X

X

X

s u b -
i m a g e

s u b -
i m a g e

s u b -
i m a g e

s u b -
i m a g e

.

.

.

.

. . .

Idea of the Parallel 2D Convolution:
The original image is decomposed
into multiple sub-images that are
convolved with the kernel image to
produce the filtered image.

Image Deblurring Application

Image Deblurring Application: Task Graph

Parallel Deblurring Speedup

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
Processors

S
p

e
e

d
u

p

Matlab/JavaPorts
Speedup
Linear

Client-Agent-Server Application

Client-Agent-Server architecture is a generalization of

the Client-Server architecture. To have client and server

focus on application-related work, the agent may

facilitate:

•Load balancing

•Service discovery

•Fault tolerance

•Scalability

Client-Agent-Server Architecture

Distributed Image Processing
• Client is responsible for collecting image data and sending

required service information to the Agent.

• Client can be a Java application or a Java Applet.

• Through an Internet browser the user can launch the Java
Applet to request access to remote server resources.

• Agent has knowledge of the image processing services
provided by each server, the network bandwidth, the system
configuration, etc, and acts as a proxy between Client and
Server.

• Server can implement an image processing components
library exploiting the JavaPorts task-to-task communication
API. E.g., Java Advanced Imaging(JAI), Matlab Image
Processing Toolbox, etc.

The Client GUI

Client-Agent-Server Configuration
• The Application consists of

Client components that
interface with an Agent
component to request image
processing functions from the
Server components.

• The Broker implements a load-
balancing scheme to distribute
the requests to the appropriate
Servers in order to optimize
the performance.

• Using the JPGUI, a variety of
Client, Agent, and Server
components can be
swapped in and out of the
application to meet the
current requirements,
without necessitating any
code changes.

The Mandelbrot Application

• Parallel Mandelbrot Set Computation

• Demonstrates ease with which a distributed application

can be developed using a combination of reusable Matlab

and Java software components

• Matlab and Java Worker components are completely

interchangeable – no code changes are required to add or

swap components

• Manager dynamically distributes computational load based

on each Worker’s performance

Mandelbrot Application Development

• A Java Worker component
is added to increase
performance

• Any combination of Java
and Matlab Workers may
be used

The Mandelbrot Application

DynamicManager sends
rows to each Worker based
on its computational
performance (pixels/ms) à

Mandelbrot Load Balancing

• DynamicManager starts each
Task with an equal fraction of
the Row increment

• In this case, the Row
increment is 40, each of 5
Tasks starts with 8 rows of
pixels to compute

• Some Tasks will be faster than
others due to such factors as
implementation or machine
loading

• As the application progresses,
the DynamicManager adjusts
each Task’s fraction up or
down according to its
computational performance

Mandelbrot Work Distribution

0

10

20

30

40

T3 (1120.0) T4 (960.0) T5 (1428.57) T6 (2.88) T7 (2.73)

Task Computational Performance (pixels/ms)

W
o

rk
 c

o
n

tr
ib

u
ti

o
n

 (
%

)

Project Evolution
We are currently investigating issues such as:

• Creation of a component library for Subsurface Sensing and Imaging

applications and testBEDS

• Integration of JavaPorts components with functions in C, Matlab, for

flexible task development

• Integration of JavaPorts with hardware components for

hardware/software co-simulation and co-design

• JavaPorts tasks dispatching through applets and software agents

• Ports specialization

• Dynamic Port creation and deletion at run-time

• Application-level Quality Of Service (QoS)

• Passing active messages and code mobility

Recent Publications
• E. Manolakos, D. Galatopoullos and A. Funk. “Component-based peer-to-peer distributed

processing in heterogeneous networks using JavaPor ts ”. Proceed ings o f the 2001 IEEE

In ternat iona l Sympos ium on Network Comput ing and App l ica t ions , pp. 234-237, Cambridge

MA, February 2002.

• E. S. Manolakos, D. Galatopoullos, A. Funk, "JavaPor ts:An Environment for the Rapid

Prototyping of Heterogeneous Network-centric Distributed Processing Applications" in the

Proceedings of the Fi f th Workshop on H igh Per fo rmance Embedded Compu t ing (HPEC-

01), MIT Lincoln Labs, Lexington, MA, November 2001

• L.A. King, H. Quinn, M. Leeser, D. Galatopoullos, E.S. Manolakos. “Runtime Execution of

Reconfigurable Hardware in a Java Environment”. Proceed ings o f the IEEE In te rna t iona l

Con fe rence on Compute r Des ign (ICCD- 01) , pp. 380-385, September 2001.

• D. Galatopoullos, E.S. Manolakos. “Developing Parallel Applications using the JavaPor t s

environment”. Paral le l and Dist r ibuted Processing , Jose' Rolim Editor, Lecture Notes in

Computer Science, Elsevier Publ., vol 1586, pp. 813-828, 1999.

• Contact Information: Prof. Elias S. Manolakos, ECE Dept. Northeastern University Phone:

617-373-3021, Fax: 617-373-4189, email: el ias@ece.neu.edu

• JavaPor ts Project web site: http://www.cdsp.neu.edu/info/faculty/manolakos/JavaPorts.html

