Learning Automata

- Learns the unknown nature of an environment
- Variable structure stochastic learning automaton is a quintuple $\{\phi,\alpha,\beta,A,G\}$ where:
 - $\varphi(n)$, state of automaton; $\varphi = {\varphi_1, ..., \varphi_s}$
 - $\alpha(n)$, output of automaton; $\alpha = \{\alpha_1, ..., \alpha_r\}$
 - $\beta(n)$, input to automaton; $\beta = \{\beta_1, ..., \beta_m\}$
 - A, is the learning algorithm;
 - G[.], is the output function; $\alpha(n)=G[\varphi(n)]$
 - *n* indicates the iteration number.

Learning Automaton Schematic

Probability Vector

- $p_j(n)$, action probability; the probability that automaton is in state j at iteration n.
- Reinforcement scheme

```
If \alpha(n) = \alpha_i and for j <> i; (j=1 \text{ to } r)
p_j(n+1) = p_j(n) - g[p_j(n)] \text{ when } \beta(n) = 0.
p_j(n+1) = p_j(n) + h[p_j(n)] \text{ when } \beta(n) = 1.
```

• In order to preserve probability measure,

$$\sum p_j(n) = 1$$
, for $j = 1$ to r.

• If $\alpha(n) = \alpha_i$

$$p_i(n+1) = p_i(n) + \sum_{j=1, j <>i} g(p_j(n))$$
 when $\beta(n) = 0$

 $p_i(n+1) = p_i(n) - \sum_{j=1, j <>i} h(p_j(n)) \quad \text{when } \beta(n) = 1$

- g(.) is the reward function
- h(.) is the penalty function

Schematic of Proposed Automata Model for Mapping/Scheduling

Model Construction

- Every task s_i associated with an S-model automaton (VSSA).
- VSSA represented as $\{\alpha^{si}, \beta^{si}, A^{si}\}$, since r = s
 - α^{si} is set of actions $\alpha^{si} = m_0, m_1, ..., m_{|M|-1}$
 - β^{si} is input to the automaton, $\beta^{si} \in [0, 1]$ closer to 0 action favorable to system; closer to 1 action unfavorable to system
 - A^{si} is reinforcement scheme
- $p_{ij}(n)$ action probability vector
 - probability of assigning task s_i to machine m_i

- Automata model for Mapping/Scheduling
 - S-model VSSA is used
 - Each automaton is represented as a tuple $\{\alpha^{si}, \beta^{si}, A^{si}\}$
 - $\ \alpha^{si} = \ m_0, \ m_1, \ \ldots, \ m_{|M|-1}$
 - $\beta^{si} \in [0, 1]$

(closer to 0 - favorable, 1 - unfavorable)

- If $c_k(n)$ is better than $c_k(n-1)$

$$E_{resp}^{k} = 0$$
 else $E_{resp}^{k} = 1$

- Translating E_{resp}^{k} to β^{si} (n) requires two steps

Translating E_{resp}^{k} to β^{s_i}

- Step 1: Translate E_{resp}^{k} to μ_{k}^{si} (n), where
 - μ^{si}_{k} (n) input to automaton s_{i} with respect to cost metric c_{k}
 - achieved by the heuristics
- Step 2: Achieved be means of Lagrange's multiplier

$$\beta^{\text{si}}\left(n\right) = \sum_{i=1}^{|C|} \lambda_{k} * \mu^{\text{si}}_{k}\left(n\right), \text{ i=1 to } |S|\text{-1}; \quad \sum_{i=1}^{|C|} \lambda_{k} = 1, \ \lambda_{k} > 0$$

where λ_k is the weight of metric c_k

Low Communication Complexity, Machines = 5

Medium Communication Complexity, Machines = 5

Schematic of Proposed Automata Model for Architecture Trades

Model Construction

- Every component of the HW system s_i associated with a P-model automaton (VSSA).
- VSSA represented as $\{\alpha^{si}, \beta^{si}, A^{si}\}$, since r = s
 - $-\alpha^{si}$ is set of component types $\alpha^{si}=c_0,c_1,...,c_{|M|-1}$
 - β^{si} is input to the automaton, $\beta^{si} = 0$, 1 0 - performance favorable to system; 1 - unfavorable to system
 - A^{si} is reinforcement scheme
- $p_{ij}(n)$ action probability vector
 - probability of choosing component s_i from component type c_j

- Automata model for Architecture Trades
 - P-model VSSA is used
 - Each automaton is represented as a tuple $\{\alpha^{si}, \beta^{si}, A^{si}\}$
 - $\alpha^{si} = C_0, C_1, ..., C_{|M|-1}$
 - $-\beta^{si} \in 0, 1$
 - (0 favorable, 1 unfavorable)
 - If $c_k(n)$ is better than $c_k(n-1)$

$$P_{\text{eval}} = 0$$
 else $P_{\text{eval}} = 1$

Conclusions

- Adaptive Framework for Mapping and Architecture trades
- Automata models allow optimization of multiple criteria
- Efficient / gracefully degradable solutions
- Framework construction suitable for tool integration
 - Mapping algorithm integrated with SAGETM
- Provides a basis for systems design from application to the embedded HW