#### High Application Availibility for HPEC

## **On Board for Mission Success**

© SKY Computers, Inc. All Rights Reserved 4/17/00 Slide 1



## High Application Availability

# Percentage of time primary application is available

MTBF MTBF+MTTR

- □ Common requirement is "5-9's" 99.999%
  - About 5 minutes down time per year
- **Failures caused by hardware, software or user**
- Large HPEC system may have an MTBF of a few weeks





#### Total system - hardware, system software and application - must be designed for HAA

#### **Typically n+m design in HPEC**

- For each resource, n required for application
- m additional provided for redundancy
- Resources must be carefully identified processors, memory, fans, power supplies, fabric connections, …
- **Recovery MUST be "automatic"**

**Don't have time for human involvement** 







© SKY Computers, Inc. All Rights Reserved 4/17/00 Slide 4





#### **Prevent failures**

- Careful electrical design
- ECC/CRC error detection/correction
- Good mechanical design including cooling
- Good software design
- Exhaustive test/debug

#### **Preempt failures**

- Online testing
- Health monitoring
  - Temperatures, fan speeds, voltages
- Opportunity to repair system before actual failure





- **Detection determine that fault exists**
- **Diagnosis identify failing component**
- □ Isolation protect rest of system from failures
- **Recovery get application running again**
- **Repair replace or restart failing component**



## Fault Management

#### **Detection**

- Hardware detected ECC/parity errors, link status change, …
- Software detected timeouts, inconsistent answers, ...
- Must be detectable by reliable resource

#### **Diagnosis**

- Identify failed resource(s)
- Repair not needed if n resources still available



## Fault Management

#### □ Isolation

- InfiniBand "automatic path migration" to use alternate path through fabric
- Software re-configuration of routing tables in InfiniBand switches
- Remove processors from CORBA scheduler
- Other application specific choices

#### **Recovery**

- Restart/resume the application with reduced configuration
- Detection to Recovery can be accomplished in a fraction of a second, perhaps milliseconds depending on failure



## Fault Management

#### **Repair**

- Since most likely root cause is software fault, reset/restart may be all that is required
- Run detailed diagnostic
  - Verify failure and locate Field Replaceable Unit (FRU)
- Return still functional resources to use
- Technician replaces FRU
  - InfiniBand supports "Live Insertion"
- Return repaired component to use





#### **Service Availability Forum**

http://developer.intel.com/platforms/applied/eiacomm/saforum.htm

#### **Linux High Availability Project**

http://linux-ha.org

#### **Real-time CORBA, Dynamic Scheduling**

http://www.omg.org

#### **Telco oriented High Availability**

http://www.goahead.com/products/products.htm http://www.ccpu.com/telco\_products/middleware.html http://www.mvista.com/cge/index.html





- HAA requires careful SYSTEM level analysis/design - hardware, system software and application must ALL cooperate
- Emerging fabrics like InfiniBand enable HAA capabilities not available previously for HPEC applications
- 5 step fault management process useful for design of HAA applications