Computer Systems, Inc.

What's Keeping Hard Real-Time Scheduling from Being a Mainstream Technology in the Embedded Multiprocessing Domain Space

Daniel M. Lorts University of Texas – Dallas and Mercury Computer Systems, Inc.

HPEC - September 2002

The Ultimate Performance Machine

Assumption Model

- The choices and assumptions made in the development of real-time systems affect many areas.
- In this research, we look at six individual, but closely related components of a system architecture.

- To make the scheduling problem simpler, various assumptions, or boundary conditions, in one or more of the models are typically made.
- Why?
 - No-hard/complete problem
 - Single semester projects
 - Limited tenureship of research
 - Focused interest/purpose

Computer Systems, Inc.

COMPUTER Systems, Inc System & Communication (current)

- System model assumptions
 - Heterogeneous processing assets
 - High-level processing capabilities
 - Fictitious architectures and topologies
 - Assets fully connected
- Communication model assumptions
 - Negligible communication costs
 - Uniform communication costs
 - Non-contentious communications
 - No priority discernment

Multi-Level System Graph

S = (R, L) top level system definition

 $R = (r_1, r_2, ..., r_N)$ N resources of system

 $\mathbf{L} = \{\mathbf{l}_{<\hat{\mathbf{a}},c>} \mid \hat{\mathbf{a}} \subset \mathbf{R} \land c > 0 \land \mathrm{Adj}(\hat{\mathbf{a}}) = 1\}$

- I represents a link connecting two resources
- à is a subset of the resources of system (R)
- c represents the number of links between the resources
- Adj() is a binary function testing for presence of links

• Advantages of the MGS:

- Multi-path capability between resources
- Total # of communication links bounded by I/O ports
- Ability to model all multiprocessing topologies
- Scalable to account for resources that have multiple functional units

 $r_1 = \{c_1, c_2, ..., c_M\}$

where $\mathbf{c}_{\mathbf{i}}$ is a unique capability of resource \mathbf{r}

omputer Systems, Inc.

offormance Machine

An MSG Example

Computer Systems, Inc.

Performance Machine

S=(R,L) where R={R1,R2,R3,R4} and L={ $l_{<al,c1>}$, $l_{<a2,c2>}$, $l_{<a3,c3>}$, $l_{<a4,c4>}$ } with $a1 = {R1}$ and c1=1

$al = \{RI\}$	and c1=1
$a^2 = \{R1, R2\}$	and c2=1
$a3 = \{R2, R4\}$	and c3=2
$a4 = \{R2, R3, R4\}$	and c4=1

	R1	R2	R3	R4
R1	l(4,1)	l(1,1)		
R2	l(1,1)		l(2,1)	l(2,1) l(3,2)
R3		l(2,1)		l(2,1)
R4		l(2,1) l(3,2)	l(2,1)	

Alternate Representation

The system model can also be defined mathematically within a table. Each cell represents the paths that exist between each resource : l<id,count>.

Scheduling Model

• Dynamic scheduling

- Transfer policy
- Selection policy
- Location policy
- Information policy

- Heuristics include:
 - Heavy Node First (HNF)
 - Critical Path Method (CPM)
 - Weighted Length (WL)
 - Earliest Deadline First (EDF)
 - Least Laxity First (LLF)

Computer Systems, Inc.

Dynamic Framework

- Allocation stage: statically assigning processes to resources
- Scheduling stage: dynamically based on allocation and application
- Provides run-time analysis of loading and balance
- Scalable solution for all multiprocessing system applications
- Possible multicomputer processor configurations
 - Round-robin/next available
 - Single parallel cluster
 - Pipeline of parallel clusters
 - Hybrid

Computer Systems, Inc.

Application Model

- Non-realistic program models (DAGs)
- Task model limited
 - Uniform temporal metrics
 - Preemptability
 - Entry points into nodes
 - Typically unary dependencies
 - Limited methods of prioritization
 - Acyclic models limited
- Task Variables
 - Computational times
 - Communications times
 - Deadlines (laxity)
 - Precedence
 - Number of children
 - Number of parents

o nodes dependencies s of prioritization

Directed Acyclic Graph

7

X

Computer Systems, Inc.

Technology Model

Time

Other technological issues

- Compiler optimization techniques
- Multifunctional resources
- Size, weight, and power considerations

Computer Systems, Inc.

Framework Details

- Structured development
 - Provides foundation
 - Validated by mapping know architecture
- Hybrid scheduling
 - Focal point of research
 - Static and dynamic approaches
- Real-Time

Computer Systems, Inc.

- **Formal temporal methods**
- Fault tolerance
 - **Dynamic detection, correction, and recovery**
- Polymorphism
 - Reactive environments
 - **Efficient 'morphing'**
- Computing
 - Quality of Service (QoS)
 - Usability and generality