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OPTIMIZATION

• Allow addition of incremental functionality into system already at capacity
• Need is often discovered during integration when schedule is critical

• Subsystem modified, but external 
interfaces unchanged

• Processor centric upgrades both computer 
hardware and software

• Software centric using existing processor

– Execute faster 
– Use less memory

– Reduce input/output blockages

– Allow I&T to continue
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SYSTEM AND ENVIRONMENT

• Airborne system using multiple sensors and processors

• Systems being integrated and flight tests on-going

• Processor fixed -- 40 MHz, environmentally certified, VME board, RISC 

• Over 35,000 lines of real-time C code had been developed and integrated

• Memory usage and input/output bandwidth were acceptable

• Execution time for full functionality projected to be greater than 100%

• Need was to reduce software execution time in one specific processor in 
order to add the remaining real-time requirements

• Software centric approach to optimization minimizes program risk

• In-process optimizations were needed ASAP for continuing flight test
(few coding changes with large benefits, low risks)
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SOFTWARE CENTRIC ENHANCEMENTS
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ESTABLISH BASELINE

• Used NT workstations (target processors unavailable for optimization)

• Used single driver for multiple computer software units
– Modified real-time software to replicate typical scenarios
– Exercised representative modes/states
– Emulated hardware interfaces and interrupts
– Captured telemetry data

• Loaded real-time software in environment similar to operational

• Established benchmarks by executing mission scenarios

• Tools: C++ compiler, Debugger, Profiler, WinDiff, Understand for C

• Used Profiler to
– Measure procedure hit counts
– Measure procedure execution times

Modify operational 
software to emulate 
external hardware

Modify operational 
software to emulate 
external hardware

Review
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VERIFY FUNCTIONALITY

• Used NT workstations

• Minimized risk, cost, and schedule by only implementing coding changes 
(no design changes, no algorithm changes, same computational intervals)

• Optimized code for performance in high CPU utilization routines identified 
by benchmarks

• Profiled optimized code against baseline to validate
– Hit counts were identical
– Telemetry files were identical

• NT Profiler timing measurements were inadequate
– Timing measurements were milliseconds and improvements were 

microseconds/nanoseconds 
– Timing measurements were for NT instead of RISC target processor

• Target processor test bed needed to verify performance enhancements

Optimize code to 
improve execution 

performance

Optimize code to 
improve execution 

performance
Review
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MEASURE ENHANCEMENTS

• Used target processor test bed (RISC and VME board)
• Reused existing software driver (without Profiler)

• Revised coding to minimize executions of software-implemented instructions

• More efficient conditionals
• Combine loops and unroll short loops

• Pointer addressing for multiple-indexed arrays 

• In-line short procedures instead of passing arguments
• Global literals instead of constant parameters

• Tailor macros for specific purpose

• Assembly language for high use routines to
– Eliminate extra compiler inserted instructions
– Minimize stack push/pull operations

Measure 
performance 

improvements

Measure 
performance 

improvements
Review
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OPTIMIZATION EXAMPLES 
USING ARITHMETIC VERSUS LOGICAL STATEMENTS

• Using arithmetic statements to replace multiple logical if-statements
– use           if(((1<<I) & (1<<0|1<<5|1<<11|1<<14|1<<20)) != 0)

or             if(((1<<I) & ~(1<<0|1<<5|1<<11|1<<14|1<<20)) == 0)
Note: Optimizing compiler reduces constant to 0x00104821

– instead of  if(I==0||I==5||I==11||I==14||I==20) where 0 ≤≤ I ≤≤ 31

• Using integer parameter to replace complex logical OR if-statements
– use           A = ( ((1<<20)<<C1) | ((1<<10)<<C2) | (1<<C3) ) &

( ((1<<20)<<4) | ((1<<10)<<6) | (1<<2) ) ;
if (A != 0)

Notes: Optimizing compiler performs constant calculations. The if-statement must be used 
several times before this optimization becomes efficient!

– instead of  if(C1==4 || C2==6 || C3==2) where 0 ≤≤ C1,C2,C3 ≤≤ 9

• Using integer parameter to replace complex logical AND if-statements
– use           B = ( ((1<<20)<<D1) | ((1<<10)<<D2) | (1<<D3) ) &

~( ((1<<20)<<7) | ((1<<10)<<3) | (1<<5) ) ;
if (B == 0)

Notes: Optimizing compiler performs constant calculations. The if-statement must be used 
several times before this optimization becomes efficient!

– instead of  if(D1==7 && D2==3 && D3==5) where 0 ≤≤ D1,D2,D3 ≤≤ 9
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OPTIMIZATION EXAMPLES 
REDUCING SW IMPLEMENTED INSTRUCTIONS

• Using reciprocals to eliminate divides 
– use              if((Y+Z) < -0.5) ; 
– instead of  if(1.0/(Y+Z) < -2.0 ) ;

• Using multiplies to replace divides
– use              X = A/(B*C*D) ;
– instead of   X = A/B/C/D ;

• Using squares to replace square roots
– use              if(Z*Z > R2) ;
– instead of  if(Z > SQRT(R2)) ;   where Z > 0

• Using pointer for double index arrays to eliminate integer multiply for addresses
– use ptr = &A[0][0] ;

for(L=0 ; L<M*N ; L++)
*ptr++ = 0.0 ;

– instead of  for(I=0 ; I<M ; I++)    where M is constant
for (J=0 : J<N ; J++)  where N is constant

A[I][J] = 0.0 ;
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OTHER OPTIMIZATION EXAMPLES 

• Using pointers instead of indexing into an array of link-list pointers
–use for(ptr=&t_index[event][0] ; *ptr != NULL_TASK ; ptr++)

t_list[*ptr].ocur_events[ix] |= bit ;
instead of   for(J=0 ; t_index[event][J] != NULL_TASK ; J++)

t_list[t_index[event][J]].ocur_events[ix] |= bit ;

• Combining sequential, dependent if-statements (especially when high utilization)
–use               if(++ctr18 > 2)  

{
ctr18 = 0 ;
if(++ctr6 > 5) ctr6 = 0 ; 

} 
– instead of   ctr18 = (++ctr18>=3) ? 0 : ctr18 ;

ctr6 = ( (ctr18==0)&&(++ctr6>=6) ) ? 0 : ctr6 ;

• Use structure copy instead of setting individual parameters (for large structures)

• Eliminate waits by interlacing programs between HW command-response

• Move the setting of un-indexed parameters outside of for-loops

• Reduce format conversions by minimizing mixed mode
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LESSONS LEARNED AND RESULTS

• Second development team can optimize code in parallel with integration team

• Identify limitations of compiler for target processor

• Modify code to minimize executions of software-implemented instructions 

• Use strengths of compiler for target processor

• Target processor test bed required because NT Profiler inadequate for timing 

• Had high confidence of functionality from NT hit counts and telemetry

• Had high confidence of performance from test bed timing measurements

• 8% throughput improvement, only 7 of 47 CSU modified

• Delivered several interim low-risk / large-gain optimizations in time to benefit 
system integration

• Completed effort over 4 months
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