
© 2002 Intrinsity, Inc.

Intrinsity, the Intrinsity logo, the Intrinsity dot logo, Advanced Signal Processor, and FastMATH are trademarks of Intrinsity, Inc. MIPS is among 
the registered trademarks and MIPS32 is among the trademarks of MIPS Technology, Inc. RapidIO and the RapidIO logo are trademarks of the 
RapidIO Trade Association. All other trademarks are for reference purposes only and are the property of their respective owners.

HPEC 2002 – September 24, 2002

An Innovative High-Performance Architecture 
for Vector and Matrix Math Algorithms

Presented by: Tim Olson, Architect

Authors: Veeraraghavan Anantha, Ph.D.;
Christophe Harlé, Ph.D.; Tim Olson, George Yost, Ph.D.



HPEC 2002; 09/24/02 2© 2002 Intrinsity, Inc.

Intrinsity FastMATH™
Vector and Matrix Math Processor

� 2 GHz SIMD 4 × 4 matrix engine 
with multiprocessor scalability due 
to high bandwidth RapidIO™
interfaces 

� Fixed-point math

� High-level (e.g., C) language 
programmable

• Compiler built-in matrix intrinsics

• Vector/matrix library

� On-chip matrix coprocessor and 
MIPS32™ ISA RISC core

� 4 × 4 array of processors, each 
with sixteen 32-bit registers, two 
40-bit MACs

� 64 GOPS (peak)

� Matrix and vector math native 
instructions: 1-, 8-, 16-, 32-bit 
support; convenient complex math

� Descriptor-based DMA controller

� 1 Mbyte on-chip cache-coherent 
L2 cache

Optimized for real-time and adaptive signal processing needs:

Innovative architecture:

Speed plus an architecture designed for parallel computations



HPEC 2002; 09/24/02 3© 2002 Intrinsity, Inc.

Intrinsity FastMATH Vector and 
Matrix Math Processor

2 GHz MIPS®
scalar engine: 

dual issue 
instructions

2 GHz 
interconnected 

4 × 4 matrix 
processor with 

16 registers

RapidIO ports balance 
I/O and processor 

speed



HPEC 2002; 09/24/02 4© 2002 Intrinsity, Inc.

Matrix Register Arithmetic: 
Element-by-Element

The matrix engine has 16 matrix registers, each with 16 32-bit values. 
Halfword and word arithmetic is supported.

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

+=

Re   Im

Complex data
by halfwords

or

M2 M1 M0

Word data

32-bits

Matrix
Registers

Single instruction, element-wise addition of two 4 × 4 matrices



HPEC 2002; 09/24/02 5© 2002 Intrinsity, Inc.

matmulhh.m.m M2,M0,M1
for i = 0 to 3

for j = 0 to 3
sum = 0
for k = 0 to 3

sum = sum + M0h(i,k) ×××× M1h(k,j);
M2h(i,j) = sum;

matmulhh.m.m M2,M0,M1
for i = 0 to 3

for j = 0 to 3
sum = 0
for k = 0 to 3

sum = sum + M0h(i,k) ×××× M1h(k,j);
M2h(i,j) = sum;

Matrix Register Arithmetic:
Matrix Multiplication

Matrix-multiply of two 4 × 4 submatrices by halfword, for example to 
support 16-bit complex arithmetic

One instruction
� Four cycles

(2 ns @ 2 GHz)
� 128 operations

M0h(0,k) x M1h(k,0)
k=0

3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

×=

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

M1M0M2

Can subdivide 
large matrices 
into 4 × 4 
parts for 
multiplication

High-high halfword
multiply, e.g., re × re

Matrix
Registers



HPEC 2002; 09/24/02 6© 2002 Intrinsity, Inc.

Matrix Register Arithmetic:
Block Rearrangement for Parallelism

� Original register load
instructions

� block4 (four cycles): 
matrix operations on four 
streams

� For SIMD operations on 16 
parallel data streams: 
continue rearrangement 
with block data movement 
instructions—70 cycles (35 
ns) total

cache
User 1
User 2
User 3
User 4

16 elements 
of 1 user

4 elements 
of 4 users

1 element 
of 16 users

Load 4 or 16 data streams 
(users) and re-block for 
SIMD parallel processing

m0 m1 m2 m3

m0 m1 m2 m3

m0 m1 m2 m3



HPEC 2002; 09/24/02 7© 2002 Intrinsity, Inc.

0

100,000

200,000

300,000

400,000

500,000

600,000

FF
Ts

 p
er

 s
ec

on
d FastMATH @

2 GHz

TMS320C6416
@ 600 MHz

MSC8101 @
300 MHz

TMS320C6203
@ 300 MHz

FastMATH Performance Example: 
Fast Fourier Transform

1 K Radix-4 FFT, 16-bit complex data

Matrix architecture plus cycle speed combine approximately equally 
for advantage on this key benchmark 

100%

18%
5%4%

Notes: Competitive data from published benchmarks
Competitive clock rates are highest announced

Processor



HPEC 2002; 09/24/02 8© 2002 Intrinsity, Inc.

FastMATH Performance Example: 
FFT to Implement OFDM

Example results: 
for 8 antennas, 10 Msamples per second, 1024-pt complex FFT: 
requires 14.4% FastMATH processor

· · ·
Front-end processing 
(e.g., FIR filter)

Orthogonal 
Frequency-Division 
Multiplexing

N samples of 
16-bit complex 

data

N-point 
FFTN frequency 

coefficients for 
each antenna

Multiple antennas

Smart antenna 
beamforming or 
symbol-rate 
processing

N-point 
FFT

N-point 
FFT



HPEC 2002; 09/24/02 9© 2002 Intrinsity, Inc.

FastMATH Performance Example: 
Smart Antennas

Modify an array’s beam pattern to 
amplify desired signals and 
suppress interference

N M-vectors 
of 16-bit 
complex 
samples

M antennas
N samples 
from each

R = M × M covariance matrix
d = Reference signal

Beamforming

ˆ y (t)= ˆ w H x(t)
ˆ y (t)

ˆ w (t)

d*(t)
x(t)

x(t)

Front-end processing

· · · 

Weight calculation

R̂ = x k( )
k = 1
∑ x H k( )

ŵ = R̂ −1 d* k( )
k = 1
∑

N

x k( )



HPEC 2002; 09/24/02 10© 2002 Intrinsity, Inc.

FastMATH Performance Example: 
Smart Antennas

Background
• More users than antennas ⇒⇒⇒⇒ orthogonal beams not possible
• No a priori information about signal directions ⇒⇒⇒⇒ need real-time adaptation
• Input stream is 16-bit complex data

FastMATH Implementation
• Covariance matrix calculated by complex matrix-matrix multiplications on 

4 × 4 submatrices, then re-assembling full matrix
• Covariance matrix inverted by Cholesky decomposition; use block matrix 

manipulation instructions to rearrange input into blocks for SIMD 
parallelization

• Beamforming using matrix-matrix multiplications; more efficient than simple 
vector math

WCDMA Example Results
• With 64 voice users and 16 antennas, 4 rake fingers per user, weights 

updated every slot: 0.73 FastMATH processors



HPEC 2002; 09/24/02 11© 2002 Intrinsity, Inc.

Algorithms
• Mitigate interference between users in CDMA
• Solve for estimators for correct symbols, beginning with user-user 

correlation matrix R and user input vector y
• Difference equation for interference on symbol m of desired user from near-

by symbols of all other users:

� is desired estimator vector for symbol m of N users to be found

Implementation
• Jacobi iteration: Solve for matrix B of M symbols for N users. Perform matrix-

matrix multiplications distributed over processors
• Calculate correlation matrices R on chip; large capacity L2 cache reduces 

data transfer
• At each iteration exchange partial results over RapidIO port via DMA
• RapidIO interfaces work in background in parallel with computations – data 

transfer time efficiently hidden 

Scaled Multiprocessor Example:
CDMA Multi-User Detection

ˆ b 

ym = Rm−kb̂ m−kk = −K

K∑



HPEC 2002; 09/24/02 12© 2002 Intrinsity, Inc.

Scaled Multiprocessor Example:
WCDMA Short Code Multi-User Detection

• Data transfer in parallel with computation
• Scalable multiprocessor system distributing tasks and results over RapidIO 

interface via coherent L2 cache 

PCI Bandwidth

RapidIO-chained 
processor array

Data transfer: 
RapidIO ports 
and large L2 
enable up to 134 
users 

D
at

a 
Tr

an
sf

er
 B

an
dw

id
th

 U
se

d:
 G

B
/s

0.5

1.0

Users

RapidIO 
Bandwidth

1346848

Mitigate user-user interference
in WCDMA via MUD:
Jacobi algorithm

Fa
st

MAT
H

pr
oc

es
so

r

Fa
st

MAT
H

pr
oc

es
so

r

Fa
st

MAT
H

pr
oc

es
so

r

Fa
st

MAT
H

pr
oc

es
so

r

1 Chip Add 2nd

Chip 4 Chips


