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Summary of Mission Driver 
Factors

w Speed of light preclude real time manual control
w Mission duration and spacecraft lifetime up to 100 years
w Adaptivity to system and environmental uncertainty through reasoning
w Cost of ground based deep space tracking and high bandwidth downlink
w Weight and cost of space craft high bandwidth downlink

n Antennas, Transmitter, Power supply
n Raw power source
n Maneuver rockets and/or inertial storage, Mid course main engine thrusters
n Launch vehicle fuel and type

w On-board science computation
w On-board mission planning (long term and real time)
w On-board mission fault detection, diagnostic, and reconfiguration
w Obstructed mission profiles
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Goals for a New Generation of
Spaceborne Supercomputer

w Performance gain of 100 to 10,000
w Low power, high power efficiency.
w Wide range for active power management.
w Fault tolerance and graceful degradation.
w High scalability to meet widely varying mission profiles.
w Common ISA for software reuse and technology migration.
w Multitasking, real time response.
w Numeric, data oriented, and symbolic computation.
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Processor in Memory (PIM)

w PIM merges logic with memory
n Wide ALUs next to the row buffer
n Optimized for memory throughput, not ALU utilization

w PIM has the potential of riding Moore's law while 
n greatly increasing effective memory bandwidth,
n providing many more concurrent execution threads,
n reducing latency, 
n reducing power, and 
n increasing overall system efficiency

w It may also simplify programming and system design
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Why is PIM Inevitable?

w Separation between memory and logic artificial
n von Neumann bottleneck
n Imposed by technology limitations
n Not a desirable property of computer architecture

w Technology now brings down barrier
n We didn’t do it because we couldn’t do it
n We can do it so we will do it

w What to do with a billion transistors
n Complexity can not be extended indefinitely
n Synthesis of simple elements through replication
n Means to fault tolerance, lower power

w Normalize memory touch time through scaled bandwidth with capacity
n Without it, takes ever longer to look at each memory block

w Will be mass market commodity commercial market
n Drivers outside of HPC thrust
n Cousin to embedded computing
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Current PIM Projects

w IBM Blue Gene
n Pflops computer for protein folding

w UC Berkeley IRAM
n Attached to conventional servers for multi-media

w USC ISI DIVA
n Irregular data structure manipulation

w U of Notre Dame PIM-lite
n Multithreaded

w Caltech MIND
n Virtual everything for scalable fault tolerant general purpose



September 24, 2002 Thomas Sterling - Caltech & NASA JPL 10

Limitations of Current PIM 
Architectures

w No global address space
w No virtual to physical address translation

n DIVA recognizes pointers for irregular data handling

w Do not exploit full potential memory bandwidth
n Most use full row buffer
n Blue Gene/Cyclops has 32 nodes

w No memory to memory process invocation
n PIM-lite & DIVA use parcels for method driven computation

w No low overhead context switching
n BG/C and PIM-lite have some support for multithreading
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MIND Architecture

w Memory-Intelligence-and-Networking Devices
w Target systems

n Homogenous MIND arrays
n Heterogeneous MIND layer with external high-speed processors
n Scalable embedded

w Addresses challenges of:
n global shared memory and virtual paged management
n irregular data structure handling
n dynamic adaptive on-chip resource management
n inter-chip transactions
n global system locality and latency management
n power management and system configurability
n fault tolerance
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Attributes of MIND Architecture

w Parcel active message driven computing
n Decoupled split-transaction execution
n System wide latency hiding
n Move work to data instead of data to work

w Multithreaded control
n Unified dynamic mechanism for resource management
n Latency hiding
n Real time response

w Virtual to physical address translation in memory
n Global distributed shared memory thru distributed directory table
n Dynamic page migration
n Wide registers serve as context sensitive TLB

w Graceful degradation for Fault tolerance
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MIND Mesh Array
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Diagram - MIND Chip Architecture
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MIND Node
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Unified Register Set Supports a 
Diversity of Runtime Mechanisms

w Node status word
w Thread state
w Parcel decoding
w Parcel construction
w Vector register
w Translation Lookaside Buffer
w Instruction cache
w Data cache
w Irregular Data Structure Node (data, pointers, usw.)
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MIND Node Instruction Set

w Basic set of word operations
w Row wide field permutations for reordering and alignment
w Data parallel ops across row-wide register and delimited subfields
w Parallel dual ops with key field and data field for rapid associative 

searches
w Thread management and control
w Parcel explicit create, send, receive
w Virtual and physical word access; local, on-chip, remote
w Floating point
w Reconfiguration
w Protected supervisor



September 24, 2002 Thomas Sterling - Caltech & NASA JPL 19

Multithreading in PIMS

w MIND must respond asynchronously to service requests 
from multiple sources

w Parcel-driven computing requires rapid response to 
incident packets

w Hardware supports multitasking for multiple concurrent 
method instantiations

w High memory bandwidth utilization by overlapping 
computation with access ops

w Manages shared on-chip resources
w Provides fine-grain context switching
w Latency hiding
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Single HWT; Multiple Memory Banks; MultiThread
probability of reg-to-reg instr fixed at 0.7
probability of data cache hit fixed at 0.9

Memory access fixed at 70 cycles
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PIM Parcel Model

w Parcel: logically complete grouping of info sent to a node on 
a PIM chip 
n by SPELLs, other PIM nodes

w At arrival, triggers local computation:
n Read from local memory
n Perform some operation(s)
n Write back locally (optional)
n Return value to sender (optional)
n Initiate additional parcel(s) (optional)
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PIM Node Architecture
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Virtual Page Handling

w Pages preferentially distributed in local groups with associated
page entry tables

w Directory table entries located by physical address
w Pages may be randomly distributed within MIND chip or group
w Pages may be randomly distributed requiring second hop from 

page table location
w Supervisor address space supports local node overhead and 

service tasks.
w Copying to physical pages, not to virtual
w Demand paging to/from backing store or other MIND chips
w Nodes directly address memory of others on same MIND chip
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Fault Tolerance

w Near fine-grain redundancy provides multiple alike resources 
to perform workload tasks.

w Even single-chip Gilgamesh (for rovers, sensor webs) will 
incorporate 4-way to 16-way redundancy and graceful 
degradation.

w Hardware architecture includes fault detection mechanisms.
w Software tags for bit-checking at hardware speeds; includes 

constant memory scrubbing. 
w Monitor threads for background fault detection and diagnosis
w Virtual data and tasks permits rapid reconfiguration without 

software regeneration or explicit remapping.
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System Availability as Function Of Number of Faults Before Node Failure
MTBF = 1 unit Exponential Arrival Rate of Faults
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Real Time Response

w Multiple nodes permits dedication of a single node to a single real 
time task

w Threads and pages can be nailed down for real time tasks
w Multithreading uses real time priority for guaranteed reaction time
w Preemptive memory access
w Virtual address translation can be buffered in registers as TLB
w Hardwired signal lines from sensors and to actuators
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Power Reduction Strategy

w Objective: achieve 10 to 100 reduction in power over conventional 
systems of comparable performance.

w On-chip data operations avoids external I/O drivers.
w Number of memory block row accesses reduced because all row bits

available for processing.
w Simple processor with reduced logic. No branch prediction 

prediction, speculative execution, complex scoreboarding.
w No caches.
w Power management of separate processor/memory nodes.
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Earth Simulator
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Architectures
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Cascade Node
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Roles for PIM/MIND in Cascade

w Perform in-place operations on zero-reuse data
w Exploit high degree data parallelism
w Rapid updates on contiguous data blocks
w Rapid associative searches through contiguous data blocks
w Gather-scatters
w Tree/graph walking
w Enables efficient and concurrent array transpose
w Permits fine grain manipulation of sparse and irregular data 

structures
w Parallel prefix operations
w In-memory data movement
w Memory management overhead work
w Engage in prestaging of data for MTV/HWT processors
w Fault monitoring, detection, and cleanup
w Manage 3/2 memory layer



September 24, 2002 Thomas Sterling - Caltech & NASA JPL 33

Speedup Smart Memory Over Dumb Memory for Various LWT Clock Rates
64 Smart Memory Nodes
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FPGA-based Breadboard

w FPGA technology has reached million gate count
w Rapid prototyping enabled
w MIND breadboard

n Dual node MIND module
n Each node

l 2 FPGAs
l 8 Mbytes of SRAM
l External serial interconnect for parcels
l Interface to other on-board node

w Test Facility
n Rack of four cages
n Each cage with eight MIND modules

w Alpha boards near completion (4)
w Beta board design waiting next generation parts
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256-bit wide SRAM
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MIND Prototype


