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Outline

e Embedded computing demands high arithmetic rates
with low power

e VLSI technology can deliver this capability — but
microprocessors cannot

e Stream processors realize the performance/power
potential of VLSI while retaining flexibility



Embedded systems demand high arithmetic
rates with low power
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For N=10, BW=100MHz, S=16, B=4, about 500GOPs
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VLSI provides high arithmetic rates with low
ower — microprocessors do not
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VLSI provides high arithmetic rates with low

power — microprocessors do not

Operation Energy
(0.13um) (0.05um)

32b ALU Operation 5p] 0.3p]
32b Register Read 10p] 0.6pJ
Read 32b from 8KB RAM 50pJ] 3pJ
Transfer 32b across chip (10mm) |100p] 17p]
Execute a uP instruction (SB-1) 1.1nJ  130p]
Transfer 32b off chip (2.5G CML) 1.3n] 400p]
Transfer 32b off chip (200M HSTL)| 1.9nJ] 1.9n]

300: 20: 1 off-chip to global to local ratio in 2002
1300: 56:1 in 2010




Why do Special-Purpose Processors Perform
Well?
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Care and Feeding of ALUs
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Stream Programs Expose Locality and
Concurrency

Kernels exploit both Kernels can be partitioned
instruction (ILP) and data across chips to exploit task
(SIMD) level parallelism. parallelism.

Streams expose  “ "~ The stream model exploits
producer-consumer parallelism without the
locality. complexity of traditional

parallel programming.
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A Bandwidth Hierarchy exploits locality and
concurrency
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e VLIW clusters with shared control
e 41.2 32-bit floating-point operations per word of memory BW
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Producer-Consumer Locality in the Depth

Extractor
Memory/Global Data SRF/Streams Clusters/Kernels
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A Bandwidth Hierarchy exploits kernel and
producer-consumer localit
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2GB/s 32GBIs 544GB/s
Memory BW Global RF BW Local RF BW

Depth Extractor 0.80 GB/s 18.45 GB/s 210.85 GB/s
MPEG Encoder 0.47 GB/s 2.46 GB/s 121.05 GB/s
Polygon Rendering 0.78 GB/s 4.06 GB/s 102.46 GB/s
QR Decomposition 0.46 GB/s 3.67 GB/s 234.57 GB/s
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Bandwidth Demand of Applications
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Local registers increase effective size and
bandwidth of SRF

~90% of live variables are captured in local registers

Only 10% of live variables need be stored in stream
register file

Fixed-size SRF is effectively 10x the size of a VRF that
must hold all live variables

Bandwidth into FPUs is 10x the SRF bandwidth




Cluster Occupancy > 80%
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Performance demonstrated on signal and
Image processin

GOPS
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Prototype

e Prototype of Imagine architecture

— Proof-of-concept 2.56cm? die in 0.18um
TI process, 21M transistors

— Collaboration with TI ASIC
— Runs all benchmarks at 240MHz

e Dual-Imagine development board
— Platform for rapid application
development

— Test & debug building blocks of a 64-
node system

— Collaboration with ISI-East
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Imagine is programmed in "C" at two levels

e Streams: — } } }

— Sequences of records

e Kernels:

— Functions that operate on
streams

— Written in KernelC
— Compiled by kernel scheduler

e Stream program:

— Defines streams, control- and
and data-flow between kernels

— Written in StreamC and C++
— Compiled by stream compiler

\ CITTTTTTTTTTITTTITTT

Stream Proc: 17 Sept 25, 2002



Simple example

e StreamC: e KernelC:

void main() {
Stream<int> a(256) ;
Stream<int> b (256) ;
Stream<int> c(256) ;
Stream<int> d(1024);

KERNEL examplel (
istream<int> a,
istream<int> b,
ostream<int> c)

examplel (a, b, c); loop stream(a) {
example2 (c, d); int ai, bi, ci;
a >> ai;
} b > bi;
ci=ai* 2 + bi * 3;

c <L ci;
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Communication scheduling achieves near optimum
kernel performance
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Stream scheduling reduces bandwidth
demand by up to 12:1 compared to caching

Stream program SRF allocation

Open GL graphics pipeline

Current DSP programmers
attempt to stage data in
this manner by hand
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We have developed...

o A stream architecture that exploits locality and concurrency
— Keeps 99% of the data accesses on chip
— Aligned accesses to SRF
— Enables efficient use of large numbers (100s) of ALUs

e Imagine: a prototype stream processor that demonstrates the
efficiency of stream architecture
— Working in the lab at 240MHz
— 9.6GFLOPS, 19.2GOPS, 6W
— Programmed in “C”
— Sustains ~5GOPS/W at 1.2V (200p]/OP)

e and demonstrated image-processing, signal processing, and
graphics applications on the Imagine stream processor
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Stream processing can be applied to
scientific computing

e Extensions to architecture
— 64b floating point — 100GFLOPS/chip

— Support 2-D, 3-D, and irregular data
structures

e Stream cache
e Indexable SRF

e Estimates suggest we can achieve
— <$20/GFLOPS
— <$10/M-GUPS
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Conclusion

e Streams expose locality and concurrency
— Concurrency across stream elements
— Producer/consumer locality
— Enables compiler optimization at a larger scale than scalar processing

o A stream architecture exploits this to achieve high arithmetic
intensity (arithmetic rate/BW)

— Keeps most (>90%) of data operations local (544GB/s, 10pJ) with low
overhead

— Keeps almost all (>99%) of data operations on chip (32GB/s, 100pJ)

e The Imagine processor demonstrates the advantages of
streaming for image and signal processing
— 9.6GFLOPs, 19.2GOPs, 6W - measured

e Stream processing is applicable to a wide range of applications
— Scientific computing
— Packet processing
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