Stream Processing for High-Performance
Embedded Systems

William J. Dally
Computer Systems Laboratory
Stanford University

HPEC
September 25, 2002

Stream Proc: 1 Sept 25, 2002

Outline

e Embedded computing demands high arithmetic rates
with low power

e VLSI technology can deliver this capability — but
microprocessors cannot

e Stream processors realize the performance/power
potential of VLSI while retaining flexibility

Embedded systems demand high arithmetic
rates with low power

Q& Equalizer
o [N &
0. Cilt QJ@ \((\
;Ia%/ <° Equalizer mbine ——

T Filter Equalize -
Bank ’0®®\ Combine ——
AL
<° Equalizer
N NS SB B
Antennae Subbands Beams
Beams

For N=10, BW=100MHz, S=16, B=4, about 500GOPs

Stream Proc: 3 Sept 25, 2002

VLSI provides high arithmetic rates with low
ower — microprocessors do not

PowerPC G4
95mm? ~1nl/op

Pkl TEW FLE

32b adder + RF, 512 x 163 tracks
205um x 65um ~ 0.013mm?2

~5pl/op

FOINT
LIKIT

Area 7300:1, Energy 200:1, Ops 4:1

Stream Proc: 4 Sept 25, 2002

VLSI provides high arithmetic rates with low

power — microprocessors do not

Operation Energy
(0.13um) (0.05um)

32b ALU Operation 5p] 0.3p]
32b Register Read 10p] 0.6pJ
Read 32b from 8KB RAM 50pJ] 3pJ
Transfer 32b across chip (10mm) |100p] 17p]
Execute a uP instruction (SB-1) 1.1nJ 130p]
Transfer 32b off chip (2.5G CML) 1.3n] 400p]
Transfer 32b off chip (200M HSTL)| 1.9nJ] 1.9n]

300: 20: 1 off-chip to global to local ratio in 2002
1300: 56:1 in 2010

Why do Special-Purpose Processors Perform
Well?

Yy
. YYYYWYY
: YYYYYY

RV
IR
SO

22222222222

Care and Feeding of ALUs

Instruction
Bandwidth

Instr.
Cache
/

N\ Regs .>

Data
Bandwidth

‘Feeding’ Structure Dwarfs ALU

Stream Programs Expose Locality and
Concurrency

Kernels exploit both Kernels can be partitioned
instruction (ILP) and data across chips to exploit task
(SIMD) level parallelism. parallelism.

Streams expose “ "~ The stream model exploits
producer-consumer parallelism without the
locality. complexity of traditional

parallel programming.

Stream Proc: 8 Sept 25, 2002

A Bandwidth Hierarchy exploits locality and
concurrency

|

|

|

I

|
SDRAM |[H+

| @

I - —
SDRAMH- € =

© o

12
SDRAM|H & &

1R
SDRAM H-

:

|

|

|

2GB/s 32GBIs 544GBIs

e VLIW clusters with shared control
e 41.2 32-bit floating-point operations per word of memory BW

Stream Proc: 9 Sept 25, 2002

Producer-Consumer Locality in the Depth

Extractor
Memory/Global Data SRF/Streams Clusters/Kernels

RRAT: Y

row of pixels :
Convolution

revious partial sums)
(Gaussian)
sums

new partial

blurred row
Convolution

revious partial sums .
Laplacian

new partial sums

sharpened row

" revious artial sums

new partial sums

1:23:317

Sept 25, 2002

Stream Proc: 10

A Bandwidth Hierarchy exploits kernel and
producer-consumer localit

[SDRAM| : °

SDRAM I S "E

[soraMHH *

2GB/s 32GBIs 544GB/s
Memory BW Global RF BW Local RF BW

Depth Extractor 0.80 GB/s 18.45 GB/s 210.85 GB/s
MPEG Encoder 0.47 GB/s 2.46 GB/s 121.05 GB/s
Polygon Rendering 0.78 GB/s 4.06 GB/s 102.46 GB/s
QR Decomposition 0.46 GB/s 3.67 GB/s 234.57 GB/s

Stream Proc: 11

Sept 25, 2002

Bandwidth Demand of Applications

Stream Proc: 12

I‘l.lemnn.r
™ DRAM)

m SRF

mm Cluster RFs

Bandwidth (GB/s)

Depth MPEG STAP RTSL
{nuamgn}

Sept 25, 2002

Local registers increase effective size and
bandwidth of SRF

~90% of live variables are captured in local registers

Only 10% of live variables need be stored in stream
register file

Fixed-size SRF is effectively 10x the size of a VRF that
must hold all live variables

Bandwidth into FPUs is 10x the SRF bandwidth

Cluster Occupancy > 80%

80
60
40
20

Render RTSL
(average)

Cluster Occupancy (%)

Stream Proc: 14 Sept 25, 2002

Performance demonstrated on signal and
Image processin

GOPS

Stream Proc: 15

30

25

20

15

10

floating-point 256
16-bit applicati
pplication 23.9 ,
applications W 16-bit kernels
I\ 19.8
N
4
* . .
12.1 floating-point
i , kernel
7.0
| S L
depth mpeg qrd dct convolve fft

Sept 25, 2002

Prototype

e Prototype of Imagine architecture

— Proof-of-concept 2.56cm? die in 0.18um
TI process, 21M transistors

— Collaboration with TI ASIC
— Runs all benchmarks at 240MHz

e Dual-Imagine development board
— Platform for rapid application
development

— Test & debug building blocks of a 64-
node system

— Collaboration with ISI-East

H=Ti
B
- .:"
Fey
Cae
- R
‘-'ﬁi‘

‘e
O, .-‘
> -"-- i

.
= g

Stream Proc: 16 Sept 25, 2002

Imagine is programmed in "C" at two levels

e Streams: — } } }

— Sequences of records

e Kernels:

— Functions that operate on
streams

— Written in KernelC
— Compiled by kernel scheduler

e Stream program:

— Defines streams, control- and
and data-flow between kernels

— Written in StreamC and C++
— Compiled by stream compiler

\ CITTTTTTTTTTITTTITTT

Stream Proc: 17 Sept 25, 2002

Simple example

e StreamC: e KernelC:

void main() {
Stream<int> a(256) ;
Stream<int> b (256) ;
Stream<int> c(256) ;
Stream<int> d(1024);

KERNEL examplel (
istream<int> a,
istream<int> b,
ostream<int> c)

examplel (a, b, c); loop stream(a) {
example2 (c, d); int ai, bi, ci;
a >> ai;
} b > bi;
ci=ai* 2 + bi * 3;

c <L ci;

Stream Proc: 18 Sept 25, 2002

Communication scheduling achieves near optimum
kernel performance

O _ —
e = |:|
=
; Ee==)
W
:’:&3 =
Z _
. £ g
=
= =
7x7 convolution kernel from depth extraction g
application EES =
S =
(Above) Single iteration schedule = B =
(Right) Software pipelining shown 5 B _ E ==

Stream Proc: 19 Sept 25, 2002

Stream scheduling reduces bandwidth
demand by up to 12:1 compared to caching

Stream program SRF allocation

Open GL graphics pipeline

Current DSP programmers
attempt to stage data in
this manner by hand

L

Stream Proc: 20 Sept 25, 2002

We have developed...

o A stream architecture that exploits locality and concurrency
— Keeps 99% of the data accesses on chip
— Aligned accesses to SRF
— Enables efficient use of large numbers (100s) of ALUs

e Imagine: a prototype stream processor that demonstrates the
efficiency of stream architecture
— Working in the lab at 240MHz
— 9.6GFLOPS, 19.2GOPS, 6W
— Programmed in “C”
— Sustains ~5GOPS/W at 1.2V (200p]/OP)

e and demonstrated image-processing, signal processing, and
graphics applications on the Imagine stream processor

Stream Proc: 21 Sept 25, 2002

Stream processing can be applied to
scientific computing

e Extensions to architecture
— 64b floating point — 100GFLOPS/chip

— Support 2-D, 3-D, and irregular data
structures

e Stream cache
e Indexable SRF

e Estimates suggest we can achieve
— <$20/GFLOPS
— <$10/M-GUPS

Stream Proc: 22 Sept 25, 2002

Conclusion

e Streams expose locality and concurrency
— Concurrency across stream elements
— Producer/consumer locality
— Enables compiler optimization at a larger scale than scalar processing

o A stream architecture exploits this to achieve high arithmetic
intensity (arithmetic rate/BW)

— Keeps most (>90%) of data operations local (544GB/s, 10pJ) with low
overhead

— Keeps almost all (>99%) of data operations on chip (32GB/s, 100pJ)

e The Imagine processor demonstrates the advantages of
streaming for image and signal processing
— 9.6GFLOPs, 19.2GOPs, 6W - measured

e Stream processing is applicable to a wide range of applications
— Scientific computing
— Packet processing

Stream Proc: 23 Sept 25, 2002

	Stream Processing for High-Performance Embedded Systems
	Outline
	Embedded systems demand high arithmetic rates with low power
	VLSI provides high arithmetic rates with low power – microprocessors do not
	VLSI provides high arithmetic rates with low power – microprocessors do not
	Why do Special-Purpose Processors Perform Well?
	Care and Feeding of ALUs
	Stream Programs Expose Locality and Concurrency
	A Bandwidth Hierarchy exploits locality and concurrency
	Producer-Consumer Locality in the Depth Extractor
	A Bandwidth Hierarchy exploits kernel and producer-consumer locality
	Bandwidth Demand of Applications
	Local registers increase effective size and bandwidth of SRF
	Cluster Occupancy > 80%
	Performance demonstrated on signal and image processing
	Prototype
	Imagine is programmed in “C” at two levels
	Simple example
	Stream scheduling reduces bandwidth demand by up to 12:1 compared to caching
	We have developed…
	Stream processing can be applied to scientific computing
	Conclusion

